1
|
Singha Hazari A, Frisch ML, Wen Y, Stankovic MD, Berlinguette CP. Electrolytic Conversion of Nitro Compounds into Amines in a Membrane Reactor. J Am Chem Soc 2024. [PMID: 39353136 DOI: 10.1021/jacs.4c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Aromatic and aliphatic amines are key intermediates in the synthesis of pharmaceuticals, dyes, and agrochemicals. These amines are often sourced from nitro compounds. The hydrogenation of nitro compounds into amines requires harsh reaction conditions (e.g., high pressures and high temperatures) or additives that are usually toxic. Here we demonstrate the electrochemically-driven hydrogenation of nitro compounds into amines in the hydrogenation compartment of a membrane reactor. The hydrogen is sourced from water in an adjacent electrolysis compartment separated by a hydrogen-permeable palladium membrane. Modifications of the palladium membrane with catalyst coatings enabled a wide range of commercially relevant nitro compounds to be hydrogenated into amines, without any additives, at ambient pressure and room temperature. This membrane reactor also enables nitro hydrogenation at high reagent concentrations with high functional group tolerance.
Collapse
Affiliation(s)
- Arijit Singha Hazari
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Marvin L Frisch
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yunzhou Wen
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mia D Stankovic
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
2
|
Ju WT, Fu YM, Wang HN, Liu JR, Qu JX, Lian M, Liu T, Meng X, Su ZM. Room-Temperature Synthesis of Covalently Bridged MOP@TpPa-CH 3 Composite Photocatalysts for Artificial Photosynthesis. Inorg Chem 2024; 63:15090-15097. [PMID: 39087570 DOI: 10.1021/acs.inorgchem.4c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The conversion of CO2 into useful chemicals via photocatalysts is a promising strategy for resolving the environmental problems caused by the addition of CO2. Herein, a series of composite photocatalysts MOP@TpPa-CH3 based on MOP-NH2 and TpPa-CH3 through covalent bridging have been prepared via a facile room-temperature evaporation method and employed for photocatalytic CO2 reduction. The photocatalytic performances of MOP@TpPa-CH3 are greater than those of TpPa-CH3 and MOP-NH2, where the CO generation rate of MOP@TpPa-CH3 under 10% CO2 still reaches 119.25 μmol g-1 h-1, which is 2.18 times higher than that under pure CO2 (54.74 μmol g-1 h-1). To investigate the structural factors affecting the photocatalytic activity, MOP@TBPa-CH3 without C═O groups is synthesized, and the photoreduction performance is also evaluated. The controlling experimental results demonstrate that the excellent photoreduction CO2 performance of MOP@TpPa-CH3 in a 10% CO2 atmosphere is due to the presence of C═O groups in TpPa-CH3. This work offers a new design and construction strategy for novel MOP@COF composites.
Collapse
Affiliation(s)
- Wen-Tao Ju
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Yao-Mei Fu
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang 262700, China
| | - Hai-Ning Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Jun-Rui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Jian-Xin Qu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Meng Lian
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Teng Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Xing Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Zhong-Min Su
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang 262700, China
- Jilin University, Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Changchun 130021, China
| |
Collapse
|
3
|
Liu Y, Ma C, Zhang J, Zhou H, Qin G, Li S. Tuning the electronic structure of Pd by the surface configuration of Al 2O 3 for hydrogenation reactions. NANOSCALE 2023; 16:335-342. [PMID: 38059873 DOI: 10.1039/d3nr05258c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The electronic interaction between a metal and a support modulates the electronic structures of supported metals and plays an important role in manipulating their catalytic performance. However, this interaction is mainly realized in heterogeneous catalysts composed of reducible oxides. Herein, we demonstrate the electronic interaction between γ-Al2O3 and η-Al2O3 with varying acid-base properties and supported Pd nanoparticles (NPs) of 2 nm in size. The strength and number of acid-base sites on the supports and catalysts were systemically characterized by FT-IR spectroscopy and TPD. The supported Pd NPs exhibit electron-rich surface properties by receiving electrons from the electron-donating basic sites on γ-Al2O3, which are beneficial for catalyzing the hydrogenation of nitrobenzene. In contrast, Pd NPs loaded on η-Al2O3 are electron-deficient because of the rich electron-withdrawing acid sites of η-Al2O3. As a result, Pd/η-Al2O3 exhibits higher catalytic activity in phenylacetylene hydrogenation than Pd/γ-Al2O3. Our results suggest a promising route for designing high-performance catalysts by adjusting the acid-base properties of Al2O3 supports to maneuver the electronic structures of metals.
Collapse
Affiliation(s)
- Yinglei Liu
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Chicheng Ma
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Jiye Zhang
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Huiying Zhou
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Gaowu Qin
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China
| | - Song Li
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
4
|
Liu S, Zhang G, Zhang W, Tian N, Sun Q, Wu Z. High-Performance Ethylene Glycol Sensor Based on Imine Covalent Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3103. [PMID: 38133000 PMCID: PMC10745960 DOI: 10.3390/nano13243103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The colorless and odorless ethylene glycol is prone to unknowingly causing poisoning, making preventive monitoring of ethylene glycol necessary. In this paper, scandium (III) trifluoromethanesulfonate was used as a catalyst to successfully prepare covalent organic framework (COF) nanospheres linked by imines at room temperature. The COF nanospheres were characterized by XRD, SEM, TEM, FT-IR, UV-Vis and BET. The results show that COF nanospheres have rough surfaces and a large number of mesoporous structures, which greatly increase the active sites on the surface of the sensing material and enhance the gas sensing performance. The sensing results showed that the prepared imine-conjugated COF nanospheres exhibited a good response-recovery ability for 10 consecutive response-recovery cycles for ethylene glycol at room temperature and had a theoretical detection limit of 40 ppb. In addition, the responses of COF nanospheres to nearly 20 interfering gases, including HCl, HNO3, phenol, formaldehyde and aniline, are relatively low compared to the response to ethylene glycol, indicating that the COF nanospheres have high selectivity towards ethylene glycol. The COF nanospheres show good sensitivity and selectivity for the detection of ethylene glycol, which should be attributed to the large specific surface area, hydrogen bonding interactions, and high defects. This work provides an effective method for the detection of ethylene glycol and expands the application field of COF materials.
Collapse
Affiliation(s)
- Shiwei Liu
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi 830046, China (Q.S.)
| | - Guojie Zhang
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi 830046, China (Q.S.)
| | - Weiyu Zhang
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi 830046, China (Q.S.)
| | - Ning Tian
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi 830046, China (Q.S.)
| | - Qihua Sun
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi 830046, China (Q.S.)
| | - Zhaofeng Wu
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi 830046, China (Q.S.)
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
5
|
Campisciano V, Valentino L, Laura Alfieri M, La Parola V, Napolitano A, Giacalone F, Gruttadauria M. Highly Functionalized SWCNTs with a Dopamine Derivative as a Support for Pd Nanoparticles: A Recyclable Catalyst for the Reduction of Nitro Compounds and the Heck Reaction. Chemistry 2023; 29:e202301238. [PMID: 37518681 DOI: 10.1002/chem.202301238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/01/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) were functionalized with a dopamine derivative in which the amine group was converted to azide (dopamine azide). The direct reaction of SWCNTs and dopamine azide in o-dichlorobenzene at high temperature (160 °C) led to very highly functionalized CNTs (≈60 wt.%). Surprisingly, despite this high degree of functionalization, Raman spectroscopy detected a low disruption of the π-network of the carbonaceous support. This finding was justified by the rehybridization from sp3 to sp2 of the sidewall carbon atoms of CNTs involved in the functionalization process. Further characterization by means of different techniques such as X-ray photoelectron spectroscopy (XPS) analysis and transmission electron microscopy (TEM) allowed to shed some light on the chemical composition and morphology of the obtained material. Moreover, the estimation of the total content of phenolic units and their reducing potential after CNTs functionalization was also assessed using Folin and Ciocalteu and 2,2-diphenyl-1-picryl hydrazide (DPPH) assays. The functionalization of CNTs was exploited to immobilize palladium(II) species that were subsequently reduced with NaBH4 leading to the formation of Pd nanoparticles (NPs). The so obtained hybrid material was used as a recyclable heterogeneous catalyst for the reduction of nitro compounds and the Heck reaction.
Collapse
Affiliation(s)
- Vincenzo Campisciano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) and INSTM UdR - Palermo, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Laura Valentino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) and INSTM UdR - Palermo, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, 80126, Naples, Italy
| | - Valeria La Parola
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, 80126, Naples, Italy
| | - Francesco Giacalone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) and INSTM UdR - Palermo, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Michelangelo Gruttadauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) and INSTM UdR - Palermo, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| |
Collapse
|
6
|
Wang M, Dai H, Yang Q. Enzyme-Compatible Core-Shell Nanoreactor for in Situ H 2 -Driven NAD(P)H Regeneration. Angew Chem Int Ed Engl 2023; 62:e202309929. [PMID: 37584440 DOI: 10.1002/anie.202309929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
The regeneration of the reduced form cofactor NAD(P)H is essential for the extra-cellular application of bio-reduction, which necessitates not only the development of efficient artificial NAD(P)H regeneration catalytic system but also its well compatibility with the cascade enzymatic reduction system. In this work, we reported the preparation of a metal nanoparticle (NP) and metal complex integrated core-shell nanoreactor for H2 -driven NAD(P)H regeneration through the immobilization of a Rh complex on Ni/TiO2 surface via a bipyridine contained 3D porous organic polymer (POP). In comparison with the corresponding single component metal NPs and the immobilized Rh complex, the integrated catalyst presented simultaneously enhanced activity and selectivity in NAD(P)H regeneration thanks to the rapid spillover of activated H species from metal NPs to Rh complex. In addition, the size-sieving effect of POP precluded the direct interaction of enzyme and Rh complex confined in the pores, enabling the success coupling of core-shell nanoreactor and aldehyde ketone reductase (AKR) for chemoenzymatic reduction of acetophenone to (R)-1-phenylethan-1-ol. This work provides a strategy for the rational manipulation of multicomponent cooperation catalysis.
Collapse
Affiliation(s)
- Maodi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huicong Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
7
|
Luo J, Huang A, Yang YY, Ma XY, Chen QL, Chen J, Wu Y. Pd/Co Catalyst with High Pd Atom Utilization Efficiency for Nitrobenzene Hydrogenation at Room Temperature: Experimental and DFT Studies. Chemistry 2023; 29:e202203142. [PMID: 36565275 DOI: 10.1002/chem.202203142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Enhancing catalytic performance as well as reducing catalyst cost are the eternal pursuit for the catalysis community. Herein, a simple and effective palladium-doped cobalt (Pd/Co) catalyst with high Pd atom utilization efficiency was synthesized via galvanic replacement reaction for the selective hydrogenation of nitrobenzene with H2 at room temperature, delivering >99 % yield of aniline with up to 158 times higher catalytic activity than commercial palladium powder. Detailed characterizations and DFT calculations revealed that Co-Pd interaction leads to a decrease in electron density of Pd and the distance between Pd atoms that results in the enhanced catalytic performance. Further experiments indicated that the Pd/Co catalyst serves as a highly efficient, selective, and recyclable catalyst for a range of nitroarene substrates. This work might provide a green and sustainable methodology to design and synthesize highly active catalysts with high utilization efficiency of the noble metals in fundamental and applied research.
Collapse
Affiliation(s)
- Jingwen Luo
- Key Laboratory of General Chemistry of, the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, P. R. China
| | - Anqi Huang
- Key Laboratory of General Chemistry of, the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, P. R. China
| | - Yao-Yue Yang
- Key Laboratory of General Chemistry of, the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, P. R. China
| | - Xing-Yu Ma
- Key Laboratory of General Chemistry of, the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, P. R. China
| | - Quan-Liang Chen
- Key Laboratory of General Chemistry of, the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, P. R. China
| | - Junxian Chen
- Key Laboratory of General Chemistry of, the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, P. R. China
| | - Yajuan Wu
- Key Laboratory of General Chemistry of, the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, P. R. China
| |
Collapse
|
8
|
Wang GB, Xie KH, Xu HP, Wang YJ, Zhao F, Geng Y, Dong YB. Covalent organic frameworks and their composites as multifunctional photocatalysts for efficient visible-light induced organic transformations. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Yin Y, Wu L, Chen C, Zheng B, Xiong WW. A facile strategy for engineering heterostructures of Pd nanoparticle-loaded metal-organic framework nanosheets as active hydrogenation catalysts. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Wang M, Yang Q. Microenvironment engineering of supported metal nanoparticles for chemoselective hydrogenation. Chem Sci 2022; 13:13291-13302. [PMID: 36507185 PMCID: PMC9682894 DOI: 10.1039/d2sc04223a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022] Open
Abstract
Selective hydrogenation with supported metal catalysts widely used in the production of fine chemicals and pharmaceuticals often faces a trade-off between activity and selectivity, mainly due to the inability to adjust one factor of the active sites without affecting other factors. In order to solve this bottleneck problem, the modulation of the microenvironment of active sites has attracted more and more attention, inspired by the collaborative catalytic mode of enzymes. In this perspective, we aim to summarize recent advances in the regulation of the microenvironment surrounding supported metal nanoparticles (NPs) using porous materials enriched with organic functional groups. Insights on how the microenvironment induces the enrichment, oriented adsorption and activation of substrates through non-covalent interaction and thus determines the hydrogenation activity and selectivity will be particularly discussed. Finally, a brief summary will be provided, and challenges together with a perspective in microenvironment engineering will be proposed.
Collapse
Affiliation(s)
- Maodi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
11
|
Guo H, Liu Y, Wu N, Sun L, Yang W. Covalent Organic Frameworks (COFs): A Necessary Choice For Drug Delivery. ChemistrySelect 2022. [DOI: 10.1002/slct.202202538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Guo
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Yinsheng Liu
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Ning Wu
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Lei Sun
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Wu Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| |
Collapse
|
12
|
Deng Y, Wang Y, Xiao X, Saucedo BJ, Zhu Z, Xie M, Xu X, Yao K, Zhai Y, Zhang Z, Chen J. Progress in Hybridization of Covalent Organic Frameworks and Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202928. [PMID: 35986438 DOI: 10.1002/smll.202202928] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) hybrid materials are a class of porous crystalline materials that integrate MOFs and COFs with hierarchical pore structures. As an emerging porous frame material platform, MOF/COF hybrid materials have attracted tremendous attention, and the field is advancing rapidly and extending into more diverse fields. Extensive studies have shown that a broad variety of MOF/COF hybrid materials with different structures and specific properties can be synthesized from diverse building blocks via different chemical reactions, driving the rapid growth of the field. The allowed complementary utilization of π-conjugated skeletons and nanopores for functional exploration has endowed these hybrid materials with great potential in challenging energy and environmental issues. It is necessary to prepare a "family tree" to accurately trace the developments in the study of MOF/COF hybrid materials. This review comprehensively summarizes the latest achievements and advancements in the design and synthesis of MOF/COF hybrid materials, including COFs covalently bonded to the surface functional groups of MOFs (MOF@COF), MOFs grown on the surface of COFs (COF@MOF), bridge reaction between COF and MOF (MOF+COF), and their various applications in catalysis, energy storage, pollutant adsorption, gas separation, chemical sensing, and biomedicine. It concludes with remarks concerning the trend from the structural design to functional exploration and potential applications of MOF/COF hybrid materials.
Collapse
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Brett Jacob Saucedo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhijun Zhu
- Institute of Molecular Metrics, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Mingsen Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xinru Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Kun Yao
- Shenzhen Zhongxing New Material Technology Company Ltd., Shenzhen, 518000, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrics, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
13
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
14
|
Nickel Nanoparticles Encapsulated in Carbon Nanotubes as an Efficient and Robust Catalyst for Hydrogenation of Nitroarenes. Catal Letters 2022. [DOI: 10.1007/s10562-022-04007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Guo M, Jayakumar S, Luo M, Kong X, Li C, Li H, Chen J, Yang Q. The promotion effect of π-π interactions in Pd NPs catalysed selective hydrogenation. Nat Commun 2022; 13:1770. [PMID: 35365621 PMCID: PMC8975908 DOI: 10.1038/s41467-022-29299-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
The utilization of weak interactions to improve the catalytic performance of supported metal catalysts is an important strategy for catalysts design, but still remains a big challenge. In this work, the weak interactions nearby the Pd nanoparticles (NPs) are finely tuned by using a series of imine-linked covalent organic frameworks (COFs) with different conjugation skeletons. The Pd NPs embedded in pyrene-COF are ca. 3 to 10-fold more active than those in COFs without pyrene in the hydrogenation of aromatic ketones/aldehydes, quinolines and nitrobenzene, though Pd have similar size and surface structure. With acetophenone (AP) hydrogenation as a model reaction, systematic studies imply that the π-π interaction of AP and pyrene rings in the vicinity of Pd NPs could significantly reduce the activation barrier in the rate-determining step. This work highlights the important role of non-covalent interactions beyond the active sites in modulating the catalytic performance of supported metal NPs.
Collapse
Affiliation(s)
- Miao Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sanjeevi Jayakumar
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Mengfei Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| | - Xiangtao Kong
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, China
| | - Chunzhi Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - He Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Qihua Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
16
|
He Y, Pan G, Li L, Zhong S, Li L, Liu Z, Yu Y. Local charge transfer within a covalent organic framework and Pt nanoparticles promoting interfacial catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pyridine-functionalized covalent organic framework encapsulating Pt nanoparticles with local charge transfer was developed, which efficiently catalyzed H2 production from ammonia borane hydrolysis in water.
Collapse
Affiliation(s)
- Yajun He
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Guodong Pan
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Liuyi Li
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shenghong Zhong
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Lingyun Li
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zheyuan Liu
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yan Yu
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
17
|
Yang X, Tan LX, Sun JK. Encapsulation of Metal Clusters within Porous Organic Materials: From Synthesis to Catalysis Applications. Chem Asian J 2021; 17:e202101289. [PMID: 34964281 DOI: 10.1002/asia.202101289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/27/2021] [Indexed: 11/05/2022]
Abstract
Metal clusters (MCs) with dimensions between a single metal atom and nanoparticles of >2 nm usually possess distinct geometric and electronic structures, their outstanding performance in catalysis applications have underpinned a broad research interest. However, smaller-sized MCs are easily deactivated by migration coalescence during the catalysis process because of their high surface energy. Therefore, the search of an appropriate stabilizer for MCs is urgently demanded. In recent years, porous organic polymers (POPs) and organic molecular cages (OMCs), as emerging functional materials, have attracted significant attention. Benefiting from the spatial confinement, encapsulating MCs into these porous organic materials is a promising approach to guarantee the uniform size distribution and stability. In this review, we aim to provide a comprehensive summary of the recent progress in the synthetic strategies and catalysis applications of the encapsulated MCs, and seek to uncover promising ideas that can stimulate future developments at both the fundamental and applied levels.
Collapse
Affiliation(s)
- Xiaodong Yang
- Beijing Institute of Technology, chemistry and chemical engineering, CHINA
| | - Liang-Xiao Tan
- Beijing Institute of Technology, chemistry and chemical engineering, CHINA
| | - Jian-Ke Sun
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, 8 East Liangxiang Street, Fangshan District, Beijing, 102488, Beijing, CHINA
| |
Collapse
|
18
|
Platinum Nanoclusters Uniformly Dispersed on Covalent Organic Framework Supports for Selective Synthesis of Secondary Amines. ChemCatChem 2021. [DOI: 10.1002/cctc.202101587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|