1
|
Doraghi F, Karimtabar MS, Ghasemi M, Larijani B, Mahdavi M. Transition Metal-Catalyzed Dual C-H Activation/Annulation Reactions Involving Internal Alkynes. CHEM REC 2024; 24:e202400069. [PMID: 38984737 DOI: 10.1002/tcr.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Indexed: 07/11/2024]
Abstract
Recently, transition metal-catalyzed ortho-C-H bond activation/annulations involving two internal alkyne molecules have been extensively used to synthesize highly substituted polycyclic aromatic scaffolds. Such reactions have emerged as a powerful atom and step-economical strategy for the assembly of multifunctional bioactive molecules. In this context, we focused on the recent achievements of dual C-H bond activation/annulations, as well as functionalization reactions involving diaryl/alkyl alkynes.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Karimtabar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mehran Ghasemi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa, 616, Sulanate of, Oman
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wang H, He YY, Han J, Zhou ZQ, Hu XQ. Metal-Free Cyanation of gem-Difluoroalkenes via Azide-Mediated C-C Double Bond Fragmentation. J Org Chem 2024. [PMID: 38787532 DOI: 10.1021/acs.joc.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Activation and cleavage of C-C double bonds are long-standing challenges in synthetic chemistry. Herein, we report an unprecedented azide-mediated C-C double bond fragmentation of gem-difluoroalkenes under mild and metal-free conditions, enabling the efficient synthesis of structurally diverse aromatic nitriles in moderate to good yields. This protocol is also amenable to the cyanation of gem-dichloro and dibromo alkenes. This reaction features simple operation and good functional group compatibility and can be implemented at a gram scale.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yuan-Yuan He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jianwei Han
- Jiangsu Tetra New Material Technology Co., Ltd, Taixing 225400, China
| | - Zhong-Qiang Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
3
|
Li Y, Meng Z, Zhu X, Hao XQ, Song MP. Cu(II)-Mediated Sulfonylation of (Hetero)arenes with TosMIC Using Monodentate Directing Groups. J Org Chem 2024; 89:3894-3906. [PMID: 38385785 DOI: 10.1021/acs.joc.3c02730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Monodentate chelation-assisted direct ortho-C-H sulfonylation of (hetero)arenes using TosMIC as the novel sulfonylating reagent has been developed. A broad range of substrates, including indolines, indoles, 2-phenylpyridines, and others were well tolerated to afford the corresponding products in moderate to good yields. Mechanistic studies revealed that the sulfonyl radical might be involved. Inspired by the above discovery, preliminary para-C-H sulfonylation of naphthalene substrate was also successfully realized. The current protocol featured with cheap metal catalysis, good functional group compatibility, and operational convenience.
Collapse
Affiliation(s)
- Yigao Li
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Zhuang Meng
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| |
Collapse
|
4
|
Shan Y, Zhang X, Liu G, Li J, Liu Y, Wang J, Chen D. Cyanation with isocyanides: recent advances and perspectives. Chem Commun (Camb) 2024; 60:1546-1562. [PMID: 38240334 DOI: 10.1039/d3cc05880h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cyanation has attracted considerable attention in organic synthesis because nitriles are key structural motifs in numerous important dyes, agrochemicals, natural products and drug molecules. As the fourth generation of cyanating reagents, isocyanides occupy a prominent place in the synthesis of nitriles due to their favorable stability, easy operability and high reactivity. In recent years, three types of cyanation with isocyanides have been established: the cleavage of the C-NC bond of tertiary alkyl isocyanides (Type I), the rearrangement of aryl isocyanides with azides (Type II), and the reductive cyanation of ketones with α-acidic isocyanides (Type III). This review focuses on advances in cyanation with isocyanides with an emphasis on reaction scope, limitations and mechanisms, which could reveal their remarkable value and superiority for accessing various nitriles. In addition, the future development prospects of this specific field are also introduced. We believe that this feature article will serve as a comprehensive tool to navigate cyanation with isocyanides across the vast area of synthetic chemistry.
Collapse
Affiliation(s)
- Yingying Shan
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiuhua Zhang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Gongle Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jianming Li
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongwei Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jia Wang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Dianpeng Chen
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
5
|
Li LJ, Zhou ZQ, Liu ZK, He YY, Jia FC, Hu XQ. Organo-cyanamides: convenient reagents for catalytic amidation of carboxylic acids. Chem Commun (Camb) 2023; 59:438-441. [PMID: 36515146 DOI: 10.1039/d2cc05826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An unprecedented DMAP-catalysed amidation of aryl and alkyl carboxylic acids with organo-cyanamides has been developed. Unlike the use of N-cyano-N-phenyl-p-methylbenzenesulfonamide (NCTS) as an electrophilic cyanating reagent, an unusual desulfonylation/decyanation reaction model has been disclosed for the first time. Remarkable features of this reaction include readily available substrates, simple operation and broad scope, enabling the efficient synthesis of structurally diverse amides. The synthetic utility of this protocol was demonstrated by the late-stage amidation of bioactive carboxylic acids and a scale-up reaction.
Collapse
Affiliation(s)
- Li-Jing Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| | - Zhong-Qiang Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| | - Yuan-Yuan He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| | - Feng-Cheng Jia
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China.
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
6
|
Yan F, Bai JF, Dong Y, Liu S, Li C, Du CX, Li Y. Catalytic Cyanation of C-N Bonds with CO 2/NH 3. JACS AU 2022; 2:2522-2528. [PMID: 36465537 PMCID: PMC9709945 DOI: 10.1021/jacsau.2c00392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Cyanation of benzylic C-N bonds is useful in the preparation of important α-aryl nitriles. The first general catalytic cyanation of α-(hetero)aryl amines, analogous to the Sandmeyer reaction of anilines, was developed using reductive cyanation with CO2/NH3. A broad array of α-aryl nitriles was obtained in high yields and regioselectivity by C-N cleavage of intermediates as ammonium salts. Good tolerance of functional groups such as ethers, CF3, F, Cl, esters, indoles, and benzothiophenes was achieved. Using 13CO2, a 13C-labeled tryptamine homologue (five steps, 31% yield) and Cysmethynil (six steps, 37% yield) were synthesized. Both electronic and steric effects of ligands influence the reactivity of alkyl nickel species with electrophilic silyl isocyanates and thus determine the reactivity and selectivity of the cyanation reaction. This work contributes to the understanding of the controllable activation of CO2/NH3 and provides the promising potential of the amine cyanation reaction in the synthesis of bio-relevant molecules.
Collapse
Affiliation(s)
- Fachao Yan
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Jian-Fei Bai
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yanan Dong
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| | - Shaoli Liu
- College
of Chemistry and Chemical Engineering, Yantai
University, Yantai 264005, P. R. China
| | - Chen Li
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| | - Chen-Xia Du
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yuehui Li
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
7
|
Cui Y, Zhao Y, Shen J, Zhang G, Ding C. The stable "F-SO 2 +" donor provides a mild and efficient approach to nitriles and amides. RSC Adv 2022; 12:33064-33068. [PMID: 36425170 PMCID: PMC9672908 DOI: 10.1039/d2ra05890a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/20/2022] [Indexed: 10/17/2023] Open
Abstract
In this update, we developed a mild, efficient and practical method using fluorosulfuryl imidazolium salt A as an environment friendly promoter for conversion of oximes to nitriles or amides via β-elimination or Beckmann rearrangement in almost quantitative yield in 10 minutes. The target products were generated in gram-scale and could be collected through crystallization without silica gel column purification in excellent yield.
Collapse
Affiliation(s)
- Yin Cui
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yiyong Zhao
- Zhejiang Ecological Environment Low Carbon Development Center Hangzhou 310014 P. R. China
| | - Junjie Shen
- Zhejiang Kefeng New Material Co. LTD Huzhou 313200 P. R. China
| | - Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
8
|
Ma J, Zhou X, Guo P, Cheng H, Ji H. Copper‐Mediated
and Catalyzed
C‐H
Bond Amination via
Chelation‐Assistance
: Scope, Mechanism and Synthetic Applications. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiao‐Li Ma
- College of Chemistry, Guangdong University of Petrochemical Technology Maoming 525000 PR China
| | - Xu‐Ming Zhou
- College of Chemistry, Guangdong University of Petrochemical Technology Maoming 525000 PR China
| | - Peng‐Hu Guo
- College of Chemistry, Guangdong University of Petrochemical Technology Maoming 525000 PR China
| | - Hui‐Cheng Cheng
- College of Chemistry, Guangdong University of Petrochemical Technology Maoming 525000 PR China
| | - Hong‐bing Ji
- College of Chemistry, Guangdong University of Petrochemical Technology Maoming 525000 PR China
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat‐sen University Guangzhou 510275 PR China
| |
Collapse
|
9
|
Ma J, Zhou X, Chen JL, Shi J, Cheng HC, Guo P, Ji H. Directing Group Strategies in Rhodium-Catalyzed C-H Amination. Org Biomol Chem 2022; 20:7554-7576. [DOI: 10.1039/d2ob01157c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Construction of a carbon-nitrogen bond is one of the most prevalent operations in nature and organic synthesis. The resulting amino compounds are privileged structural fragments in natural products, pharmaceutical drugs,...
Collapse
|
10
|
Abstract
An electrochemical approach for the site-selective C-H cyanation of indoles employing readily available TMSCN as cyano source has been developed. The electrosynthesis relies on the tris(4-bromophenyl)amine as a redox catalyst, which achieves better yield and regioselectivity. A variety of C2- and C3-cyanated indoles were obtained in satisfactory yields. The reactions are conducted in a simple undivided cell at room temperature and obviate the need for transition-metal reagent and chemical oxidant.
Collapse
Affiliation(s)
- Laiqiang Li
- Advanced Research Institute and Department of Chemistry Taizhou University, Taizhou 318000, P.R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry Taizhou University, Taizhou 318000, P.R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry Taizhou University, Taizhou 318000, P.R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| |
Collapse
|