1
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
2
|
Wu L, Wang Z, Qiao Y, Xie L, Wang Q. Photoexcited nitroarenes for alkylation of quinoxalin-2(1 H)-ones. Chem Commun (Camb) 2024; 60:11311-11314. [PMID: 39295587 DOI: 10.1039/d4cc04315d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A straightforward method for the dehydrogenative alkylation of quinoxalin-2(1H)-ones with alkylbenzenes has been developed, facilitated by a photoexcited nitroarene. The reaction's success hinges on the dual role of the photoexcited nitroarene molecule, acting as both a hydrogen atom transfer (HAT) reagent and an oxidant. This technique is both atom-economical and cost-effective, due to the readily available nitroarene, which serves as the sole intermediary in the reaction process.
Collapse
Affiliation(s)
- Lingang Wu
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Zhaoxue Wang
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Yanling Qiao
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Lei Xie
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
3
|
Debruyne M, Van Der Voort P, Van Speybroeck V, Stevens CV. The Application of Porous Organic Polymers as Metal Free Photocatalysts in Organic Synthesis. Chemistry 2024; 30:e202400311. [PMID: 38499471 DOI: 10.1002/chem.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Concerns about increasing greenhouse gas emissions and their effect on our environment highlight the urgent need for new sustainable technologies. Visible light photocatalysis allows the clean and selective generation of reactive intermediates under mild conditions. The more widespread adoption of the current generation of photocatalysts, particularly those using precious metals, is hampered by drawbacks such as their cost, toxicity, difficult separation, and limited recyclability. This is driving the search for alternatives, such as porous organic polymers (POPs). This new class of materials is made entirely from organic building blocks, can possess high surface area and stability, and has a controllable composition and functionality. This review focuses on the application of POPs as photocatalysts in organic synthesis. For each reaction type, a representative material is discussed, with special attention to the mechanism of the reaction. Additionally, an overview is given, comparing POPs with other classes of photocatalysts, and critical conclusions and future perspectives are provided on this important field.
Collapse
Affiliation(s)
- Maarten Debruyne
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Veronique Van Speybroeck
- Department of Applied Physics, Ghent University, Technologiepark Gent, 46, 9052, Zwijnaarde, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
4
|
Wang L, Yang P, Yuan J, Lian W, Jin X, Zhang S, Yang L, Xing D. Visible-Light-Promoted Deoxygenative Alkylation of Quinoxalin-2(1 H)-ones with Activated Alcohols. J Org Chem 2024; 89:6334-6344. [PMID: 38616699 DOI: 10.1021/acs.joc.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A one-pot strategy for deoxygenative alkylation of alcohols with quinoxalin-2(1H)-ones was developed by using xanthate salts as alcohol-activating groups for radical generation in the presence of tricyclohexylphosphine under visible-light-promoted conditions. The remarkable features of this reaction include a broad substrate scope, excellent functional group tolerance, mild conditions, and simple operation. Moreover, the synthetic utility of this reaction was validated by the success of two-step one-pot reactions, scale-up synthesis, and chemoselective radical monodeoxygenation of diols.
Collapse
Affiliation(s)
- Lili Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Pengyuan Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinwei Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wei Lian
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xinrong Jin
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Sanyu Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Dongliang Xing
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
5
|
Tian Y, Bu X, Wang L, E J, Shi L, Tian H, Yang X, Fu H, Zhao Z. Visible Light-Driven Flexible Synthesis of α-Alkylated Glycine Derivatives Catalyzed by Reusable Covalent Organic Frameworks. J Org Chem 2024; 89:1657-1668. [PMID: 38241608 DOI: 10.1021/acs.joc.3c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Herein, we report a heterogeneous visible light-driven preparation of α-alkylated glycine derivatives. This approach employed a β-ketoenamine-linked covalent organic framework (2D-COF-4) as the heterogeneous photocatalyst and N-hydroxy phthalimide (NHPI) esters as the alkyl radical sources. Numerous glycine derivatives, including dipeptides, were precisely and efficiently alkylated under visible light-driven reaction conditions. Based on the excellent photoactivity and organic reaction compatibility of 2D-COF-4, this alkylation could proceed flexibly in a green solvent (ethanol) without any other additives. The photocatalyst and phthalimide were fruitfully recycled with a simple workup procedure, revealing a high ecoscale value and low environmental factor (E-factor).
Collapse
Affiliation(s)
- Yao Tian
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Luohe Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Junnan E
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Liangliang Shi
- Tianjin Lisheng Pharmaceutical Co., Ltd., Tianjin 300385, P. R. China
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin300385, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| |
Collapse
|
6
|
Yang Q, Wang H, Wang X, Lei Y. Recent Developments in Direct C-H Functionalization of Quinoxalin-2(1 H)-Ones via Heterogeneous Catalysis Reactions. Molecules 2023; 28:5030. [PMID: 37446689 DOI: 10.3390/molecules28135030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, Web of Science has published nearly one hundred reports per year on quinoxalin-2(1H)-ones, which have attracted great interest due to their wide applications in pharmaceutical and materials fields, especially in recyclable heterogeneous catalytic reactions for direct C-H functionalisation. This review summarises for the first time the methods and reaction mechanisms of heterogeneous catalytic reactions of quinoxalin-2(1H)-ones, including six major types of heterogeneous catalysts involved. The heterogeneous reactions of quinoxalin-2(1H)-ones are summarised by classifying different types of catalytic materials (graphitic phase carbon nitride, MOF, COF, ion exchange resin, piezoelectric materials, and microsphere catalysis). In addition, this review discusses the future development of heterogeneous catalytic reactions of quinoxalin-2(1H)-ones, including the construction of C-B/Si/P/RF/X/Se bonds by heterogeneous catalytic reactions, the enrichment of heterogeneous catalysts such as metal oxides, graphene-based composites, doped metal nanoparticles, and molecular sieve-based porous materials, asymmetric synthesis, and other areas. The aim of this review is to contribute to the development of green and sustainable heterogeneous reaction methods for quinoxalin-2(1H)-ones with applications in materials chemistry and pharmacology.
Collapse
Affiliation(s)
- Qiming Yang
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Hu Wang
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Xiang Wang
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Yizhu Lei
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| |
Collapse
|
7
|
López-Magano A, Daliran S, Oveisi AR, Mas-Ballesté R, Dhakshinamoorthy A, Alemán J, Garcia H, Luque R. Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209475. [PMID: 36563668 DOI: 10.1002/adma.202209475] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Organic photochemistry is intensely developed in the 1980s, in which the nature of excited electronic states and the energy and electron transfer processes are thoroughly studied and finally well-understood. This knowledge from molecular organic photochemistry can be transferred to the design of covalent organic frameworks (COFs) as active visible-light photocatalysts. COFs constitute a new class of crystalline porous materials with substantial application potentials. Featured with outstanding structural tunability, large porosity, high surface area, excellent stability, and unique photoelectronic properties, COFs are studied as potential candidates in various research areas (e.g., photocatalysis). This review aims to provide the state-of-the-art insights into the design of COF photocatalysts (pristine, functionalized, and hybrid COFs) for organic transformations. The catalytic reaction mechanism of COF-based photocatalysts and the influence of dimensionality and crystallinity on heterogenous photocatalysis performance are also discussed, followed by perspectives and prospects on the main challenges and opportunities in future research of COFs and COF-based photocatalysts.
Collapse
Affiliation(s)
- Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Saba Daliran
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Amarajothi Dhakshinamoorthy
- School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José Alemán
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia, 46022, Spain
| | - Hermenegildo Garcia
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, E14014, Spain
- Department of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| |
Collapse
|
8
|
Song HY, Liu MY, Huang J, Wang D, Jiang J, Chen JY, Yang TB, He WM. Photosynthesis of 3-Alkylated Coumarins from Carboxylic Acids Catalyzed by a Na 2S-Based Electron Donor-Acceptor Complex. J Org Chem 2023; 88:2288-2295. [PMID: 36738288 DOI: 10.1021/acs.joc.2c02679] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A simple and practical electron donor-acceptor (EDA) strategy to synthesize various 3-alkylated coumarins from easily available coumarins and naturally abundant carboxylic acids under photocatalyst-, oxidant-, and additive-free and mild conditions is reported. Using Na2S as the catalytic electron donor, a series of primary, secondary, and tertiary carbon radicals can be efficiently generated, and the EDA complex can be regenerated without an alkaline additive.
Collapse
Affiliation(s)
- Hai-Yang Song
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Mei-Yi Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jing Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Dan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jin-Yang Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Tian-Bao Yang
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
9
|
Gong YN, Guan X, Jiang HL. Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Feliczak-Guzik A. Nanomaterials as Photocatalysts-Synthesis and Their Potential Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010193. [PMID: 36614532 PMCID: PMC9822232 DOI: 10.3390/ma16010193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 05/25/2023]
Abstract
Increasing demand for energy and environmental degradation are the most serious problems facing the man. An interesting issue that can contribute to solving these problems is the use of photocatalysis. According to literature, solar energy in the presence of a photocatalyst can effectively (i) be converted into electricity/fuel, (ii) break down chemical and microbial pollutants, and (iii) help water purification. Therefore, the search for new, efficient, and stable photocatalysts with high application potential is a point of great interest. The photocatalysts must be characterized by the ability to absorb radiation from a wide spectral range of light, the appropriate position of the semiconductor energy bands in relation to the redox reaction potentials, and the long diffusion path of charge carriers, besides the thermodynamic, electrochemical, and photoelectrochemical stabilities. Meeting these requirements by semiconductors is very difficult. Therefore, efforts are being made to increase the efficiency of photo processes by changing the electron structure, surface morphology, and crystal structure of semiconductors. This paper reviews the recent literature covering the synthesis and application of nanomaterials in photocatalysis.
Collapse
Affiliation(s)
- Agnieszka Feliczak-Guzik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
11
|
Peng S, Liu J, Yang LH, Xie LY. Sunlight Induced and Recyclable g-C 3N 4 Catalyzed C-H Sulfenylation of Quinoxalin-2(1 H)-Ones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155044. [PMID: 35956990 PMCID: PMC9370749 DOI: 10.3390/molecules27155044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
A sunlight-promoted sulfenylation of quinoxalin-2(1H)-ones using recyclable graphitic carbon nitride (g-C3N4) as a heterogeneous photocatalyst was developed. Using the method, various 3-sulfenylated quinoxalin-2(1H)-ones were obtained in good to excellent yields under an ambient air atmosphere. Moreover, the heterogeneous catalyst can be recycled at least six times without significant loss of activity.
Collapse
|
12
|
Pasricha S, Chaudhary A, Srivastava A. Evolving Trends for C−C Bond Formation Using Functionalized Covalent Organic Frameworks as Heterogeneous Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202200576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sharda Pasricha
- Department of Chemistry Sri Venkateswara College University of Delhi India
| | - Ankita Chaudhary
- Department of Chemistry Maitreyi College, Bapu New Delhi 110021 India
| | - Abhay Srivastava
- Abhay Srivastava Material Research Centre Indian Institute of Science, Bangalore India
| |
Collapse
|
13
|
Pastoetter DL, Liu Y, Addicoat MA, Paasch S, Dianat A, Bodesheim D, Waentig AL, Xu S, Borrelli M, Croy A, Richter M, Brunner E, Cuniberti G, Feng X. Control of Crystallinity of Vinylene-Linked Two-Dimensional Conjugated Polymers by Rational Monomer Design. Chemistry 2022; 28:e202104502. [PMID: 35157327 PMCID: PMC9314868 DOI: 10.1002/chem.202104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Indexed: 11/09/2022]
Abstract
The interest in two-dimensional conjugated polymers (2D CPs) has increased significantly in recent years. In particular, vinylene-linked 2D CPs with fully in-plane sp2 -carbon-conjugated structures, high thermal and chemical stability, have become the focus of attention. Although the Horner-Wadsworth-Emmons (HWE) reaction has been recently demonstrated in synthesizing vinylene-linked 2D CPs, it remains largely unexplored due to the challenge in synthesis. In this work, we reveal the control of crystallinity of 2D CPs during the solvothermal synthesis of 2D-poly(phenylene-quinoxaline-vinylene)s (2D-PPQVs) and 2D-poly(phenylene-vinylene)s through the HWE polycondensation. The employment of fluorinated phosphonates and rigid aldehyde building blocks is demonstrated as crucial factors in enhancing the crystallinity of the obtained 2D CPs. Density functional theory (DFT) calculations reveal the critical role of the fluorinated phosphonate in enhancing the reversibility of the (semi)reversible C-C single bond formation.
Collapse
Affiliation(s)
- Dominik L. Pastoetter
- Chair of Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Department of Synthetic Materials and Functional DevicesMax-Planck Institute of Microstructure Physics06120HalleGermany
| | - Yannan Liu
- Chair of Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Matthew A. Addicoat
- School of Science and TechnologyNottingham Trent University Clifton LaneNottinghamNG118NSUnited Kingdom
| | - Silvia Paasch
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Arezoo Dianat
- Chair of Material Science and Nanotechnology, Faculty of Mechanical Science and EngineeringTechnische Universität Dresden01062DresdenGermany
| | - David Bodesheim
- Chair of Material Science and Nanotechnology, Faculty of Mechanical Science and EngineeringTechnische Universität Dresden01062DresdenGermany
| | - Albrecht L. Waentig
- Chair of Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Shunqi Xu
- Chair of Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Department of Synthetic Materials and Functional DevicesMax-Planck Institute of Microstructure Physics06120HalleGermany
| | - Mino Borrelli
- Chair of Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Alexander Croy
- Chair of Theoretical Chemistry Institute of Physical ChemistryFriedrich Schiller University Jena07737JenaGermany
| | - Marcus Richter
- Chair of Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Gianaurelio Cuniberti
- Chair of Material Science and Nanotechnology, Faculty of Mechanical Science and EngineeringTechnische Universität Dresden01062DresdenGermany
| | - Xinliang Feng
- Chair of Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Department of Synthetic Materials and Functional DevicesMax-Planck Institute of Microstructure Physics06120HalleGermany
| |
Collapse
|
14
|
Song S, Shi X, Zhu Y, Ren Q, Zhou P, Zhou J, Li J. Electrochemical Oxidative C-H Arylation of Quinoxalin(on)es with Arylhydrazine Hydrochlorides under Mild Conditions. J Org Chem 2022; 87:4764-4776. [PMID: 35319891 DOI: 10.1021/acs.joc.2c00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A practical and scalable protocol for electrochemical arylation of quinoxalin(on)es with arylhydrazine hydrochlorides under mild conditions has been developed. This method exhibits high efficiency, easy scalability, and broad functional group tolerance. Various quinoxalin(on)es and arylhydrazines underwent this transformation smoothly in an undivided cell, providing the corresponding aryl-substituted quinoxalin(on)es in moderate to good yields. A radical mechanism is involved in this arylation reaction.
Collapse
Affiliation(s)
- Shengjie Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiangjun Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunsheng Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Quanlei Ren
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Peng Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiadi Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianjun Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
15
|
Sun P, Wang P, Yan D, Liu Q, Zhang W, Deng J, Liu Q. Boosting charge separation in conjugated microporous polymers via fluorination for enhancing photocatalysis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01294d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated microporous polymers (CMPs) have emerged as prospective heterogeneous photocatalysts for photocatalytic aerobic oxidation due to their ease of functionalization, high surface area and porosity, and tunable band gap.
Collapse
Affiliation(s)
- Penghao Sun
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Peigen Wang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Dong Yan
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qian Liu
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Weijie Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Jiyong Deng
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Qingquan Liu
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
16
|
Daliran S, Oveisi AR, Peng Y, López-Magano A, Khajeh M, Mas-Ballesté R, Alemán J, Luque R, Garcia H. Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chem Soc Rev 2022; 51:7810-7882. [DOI: 10.1039/d1cs00976a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The review summarizes the state-of-the-art of C–H active transformations over crystalline and amorphous porous materials as new emerging heterogeneous (photo)catalysts.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Yong Peng
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mostafa Khajeh
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, EdificioMarie Curie (C-3), CtraNnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198, Moscow, Russia
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
17
|
Yue F, Dong J, Liu Y, Wang Q. Visible-light-mediated alkylation of 4-alkyl-1,4-dihydropyridines with alkenyl sulfones. Org Biomol Chem 2021; 19:8924-8928. [PMID: 34635901 DOI: 10.1039/d1ob01806j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein we report a mild, general protocol for visible-light-mediated alkylation of 4-alkyl-1,4-dihydropyridines with alkenyl sulfones. The protocol permits efficient functionalization of sulfones with a broad range of cyclic and acyclic secondary and tertiary alkyl groups and is scalable to the gram level. Its excellent functional group tolerance and mildness make it suitable for late-stage functionalization of natural products and drug molecules.
Collapse
Affiliation(s)
- Fuyang Yue
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China.
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China.
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China.
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
18
|
Wang Y, Jia D, Zeng J, Liu Y, Bu X, Yang X. Benzocarbazole Synthesis via Visible-Light-Accelerated Rh(III)-Catalyzed C-H Annulation of Aromatic Amines with Bicyclic Alkenes. Org Lett 2021; 23:7740-7745. [PMID: 34597511 DOI: 10.1021/acs.orglett.1c02709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A visible-light-accelerated Rh(III)-catalyzed C-H annulation of aromatic amines with bicyclic alkenes for the synthesis of benzocarbazole derivatives was developed. In this approach, with the cooperation of rhodium catalysis and visible-light irradiation, various aromatic amines reacted with oxabicyclic alkenes and azabicyclic alkenes smoothly at room temperature, delivering the corresponding bridged oxa or aza tetrahydro benzocarbazoles in good to excellent yields. Moreover, a series of benzo[b]carbazoles were synthesized conveniently through further aromatization in one pot. The potential of this method was demonstrated via directing-group removal, derivatization, a scale-up reaction, and fluorescence investigations.
Collapse
Affiliation(s)
- Yichun Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China
| | - Deyang Jia
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China
| | - Jing Zeng
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China
| | - Yuming Liu
- Sichuan Environmental Protection Engineering Co., Ltd., Chengdu 621000, People's Republic of China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
19
|
Moczulski M, Kowalska E, Kuśmierek E, Albrecht Ł, Albrecht A. Visible-light synthesis of 4-substituted-chroman-2-ones and 2-substituted-chroman-4-ones via doubly decarboxylative Giese reaction. RSC Adv 2021; 11:27782-27786. [PMID: 35480728 PMCID: PMC9037851 DOI: 10.1039/d1ra05914a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
Doubly decarboxylative, photoredox synthesis of 4-substituted-chroman-2-ones and 2-substituted-chroman-4-ones is described. The reaction involves two independent decarboxylation processes: the first one initiating the cycle and the second completing the process. Visible light, photoredox catalyst, base, anhydrous solvent and inert atmosphere constitute the key parameters for the success of the developed transformation. The protocol proved applicable for coumarin-3-carboxylic acids and chromone-3-carboxylic acids as well as N-(acyloxy)phthalimide which served as precursors of the corresponding alkyl radicals. The manuscript describes the doubly decarboxylative Giese reaction between N-(acyloxy)phthalimides and coumarin-3-carboxylic acids or chromone-3-carboxylic acids.![]()
Collapse
Affiliation(s)
- Marek Moczulski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| | - Ewelina Kowalska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| | - Elżbieta Kuśmierek
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| | - Anna Albrecht
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| |
Collapse
|