1
|
Ropp A, André RF, Carenco S. Phosphine-Enhanced Semi-Hydrogenation of Phenylacetylene by Cobalt Phosphide Nano-Urchins. Chempluschem 2023; 88:e202300469. [PMID: 37694531 DOI: 10.1002/cplu.202300469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Transition metal phosphides are promising, selective, and air-stable nanocatalysts for hydrogenation reactions. However, they often require fairly high temperatures and H2 pressures to provide quantitative conversions. This work reports the positive effect of phosphine additives on the activity of cobalt phosphide nano-urchins for the semi-hydrogenation of phenylacetylene. While the nanocatalyst's activity was low under mild conditions (7 bar of H2 , 100 °C), the addition of a catalytic amount of phosphine remarkably increased the conversion, e. g., from 13 % to 98 % in the case of Pn Bu3 . The heterogeneous nature of the catalyst was confirmed by negative supernatant activity tests. The catalyst integrity was carefully verified by post-mortem analyses (TEM, XPS, and liquid 31 P NMR). A stereo-electronic map was proposed to rationalize the activity enhancement provided over a selection of nine phosphines: the strongest effect was observed for low to moderately hindered phosphines, associated with strong electron donor abilities. A threshold in phosphine stoichiometry was revealed for the enhancement of activity to occur, which was related to the ratio of phosphine to surface cobalt atoms.
Collapse
Affiliation(s)
- Anthony Ropp
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, 75005, Paris, France
| | - Rémi F André
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, 75005, Paris, France
| | - Sophie Carenco
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, 75005, Paris, France
| |
Collapse
|
2
|
Rowell JL, Jia Y, Shi Z, Molina Villarino A, Kang M, Yoon D, Jiang KZ, Abruña HD, Muller DA, Robinson RD. General Route to Colloidally Stable, Low-Dispersity Manganese-Based Ternary Spinel Oxide Nanocrystals. J Am Chem Soc 2023; 145:17406-17419. [PMID: 37525439 DOI: 10.1021/jacs.3c05706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
While certain ternary spinel oxides have been well-explored with colloidal nanochemistry, notably the ferrite spinel family, ternary manganese (Mn)-based spinel oxides have not been tamed. A key composition is cobalt (Co)-Mn oxide (CMO) spinel, CoxMn3-xO4, that, despite exemplary performance in multiple electrochemical applications, has few reports in the colloidal literature. Of these reports, most show aggregated and polydisperse products. Here, we describe a synthetic method for small, colloidally stable CMO spinel nanocrystals with tunable composition and low dispersity. By reacting 2+ metal-acetylacetonate (M(acac)2) precursors in an amine solvent under an oxidizing environment, we developed a pathway that avoids the highly reducing conditions of typical colloidal synthesis reactions; these reducing conditions typically push the system toward a monoxide impurity phase. Through surface chemistry studies, we identify organic byproducts and their formation mechanism, enabling us to engineer the surface and obtain colloidally stable nanocrystals with low organic loading. We report a CMO/carbon composite with low organic contents that performs the oxygen reduction reaction (ORR) with a half-wave potential (E1/2) of 0.87 V vs RHE in 1.0 M potassium hydroxide at 1600 rpm, rivaling previous reports for the highest activity of this material in ORR electrocatalysis. We extend the general applicability of this procedure to other Mn-based spinel nanocrystals such as Zn-Mn-O, Fe-Mn-O, Ni-Mn-O, and Cu-Mn-O. Finally, we show the scalability of this method by producing inorganic nanocrystals at the gram scale.
Collapse
Affiliation(s)
- Jonathan L Rowell
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yafu Jia
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zixiao Shi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Andrés Molina Villarino
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Minsoo Kang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dasol Yoon
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin Zhijian Jiang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Richard D Robinson
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Palazzolo A, Poucin C, Freitas AP, Ropp A, Bouillet C, Ersen O, Carenco S. The delicate balance of phase speciation in bimetallic nickel cobalt nanoparticles. NANOSCALE 2022; 14:7547-7560. [PMID: 35412546 DOI: 10.1039/d2nr00917j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimetallic nickel-cobalt nanoparticles are highly sought for their potential as catalytic and magnetic nanoparticles. These are typically prepared in organic solvents in the presence of strong stabilizing ligands such as tri-n-octylphosphine (TOP). Due to the variety of cobalt crystallographic phases and to the strong interaction of the ligands with the metallic surfaces, forming fcc nanoparticles rather than a phase mixture is a challenging endeavor. Here, using a two-step synthesis strategy that aims at a core-shell nickel-cobalt morphology, we demonstrated that many parameters have to be adjusted: concentration of the metal precursors, stoichiometry of TOP, and heating program from room temperature to 180 °C. We found optimized conditions to form size-controlled fcc NiCo nanoparticles from preformed Ni nanoparticles, and the phase attribution was confirmed with a combination of X-Ray diffraction on powder and X-Ray absorption spectroscopy at the Co K edge. We then investigated the early stages of Co nucleation on the nickel using a lower stoichiometry of Co, down to 0.05 equiv. vs. Ni. Using X-ray photoelectron spectroscopy and scanning transmission electron microscopy coupled to energy-dispersive X-Ray spectroscopy and electron energy loss spectroscopy, we showed that cobalt reacts first on the nickel nanoparticles but easily forms cobalt-rich larger aggregates in the further steps of the reaction.
Collapse
Affiliation(s)
- Alberto Palazzolo
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Cyprien Poucin
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Alexy P Freitas
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Anthony Ropp
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75005 Paris, France.
| | - Corinne Bouillet
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, BP 43, Strasbourg Cedex 2, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, BP 43, Strasbourg Cedex 2, France
| | - Sophie Carenco
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|