1
|
Kaushik T, Ghosh S, Dolkar T, Biswas R, Dutta A. Noble Metal Plasmon-Molecular Catalyst Hybrids for Renewable Energy Relevant Small Molecule Activation. ACS NANOSCIENCE AU 2024; 4:273-289. [PMID: 39430376 PMCID: PMC11487674 DOI: 10.1021/acsnanoscienceau.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 10/22/2024]
Abstract
Significant endeavors have been dedicated to the advancement of materials for artificial photosynthesis, aimed at efficiently harvesting light and catalyzing reactions such as hydrogen production and CO2 conversion. The application of plasmonic nanomaterials emerges as a promising option for this purpose, owing to their excellent light absorption properties and ability to confine solar energy at the nanoscale. In this regard, coupling plasmonic particles with molecular catalysts offers a pathway to create high-performance hybrid catalysts. In this review, we discuss the plasmonic-molecular complex hybrid catalysts where the plasmonic nanoparticles serve as the light-harvesting unit and promote interfacial charge transfer in tandem with the molecular catalyst which drives chemical transformation. In the initial section, we provide a concise overview of plasmonic nanomaterials and their photophysical properties. We then explore recent breakthroughs, highlighting examples from literature reports involving plasmonic-molecular complex hybrids in various catalytic processes. The utilization of plasmonic materials in conjunction with molecular catalysts represents a relatively unexplored area with substantial potential yet to be realized. This review sets a strong basis and motivation to explore the plasmon-induced hot-electron mediated photelectrochemical small molecule activation reactions. Utilizing in situ spectroscopic investigations and ultrafast transient absorption spectroscopy, it presents a comprehensive template for scalable and sustainable antenna-reactor systems.
Collapse
Affiliation(s)
- Tannu Kaushik
- Interdisciplinary
Program Climate Studies, Indian Institute
of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Suchismita Ghosh
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
| | - Thinles Dolkar
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
| | - Rathindranath Biswas
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
| | - Arnab Dutta
- Interdisciplinary
Program Climate Studies, Indian Institute
of Technology Bombay, Mumbai, Maharashtra 400076, India
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
- National
Centre of Excellence in Carbon Capture and Utilization, Mumbai, Maharashtra 400076, India
| |
Collapse
|
2
|
Sun H, Liu X, Li Y, Zhang F, Huang X, Sun C, Huang F. Mechanistic insights of electrocatalytic CO 2 reduction by Mn complexes: synergistic effects of the ligands. Dalton Trans 2024; 53:1663-1672. [PMID: 38168800 DOI: 10.1039/d3dt03453d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The electrocatalytic mechanisms of CO2 reduction catalyzed by pyridine-oxazoline (pyrox)-based Mn catalysts were investigated by DFT calculations. In-depth comparative analyses of pyrox-based and bipyridine-based Mn complexes were carried out. C-OH cleavage is the rate-determining step for both the protonation-first path and the reduction-first path. The free energy of CO2 activation (ΔG1) and the electrons donated by CO ligands in this step are effective descriptors in regulating the C-OH cleavage barrier. The reduction of carboxylate complex 6 (E6) is the potential-determining step for the reduction-first path. Meanwhile, for the protonation-first path, the initial generation (E2) or the regeneration (E8) of active catalyst might be potential-determining. Hirshfeld charge and orbital contribution analysis indicate that E6 is definitely based on the heterocyclic ligand and E2 is related to both the heterocyclic ligand and three CO ligands. Therefore, replacement of the CO ligand by a stronger electron donating ligand can effectively boost the catalytic activity of CO2 reduction without increasing the overpotential in the reduction-first path. This hypothesis is supported by the mechanism calculations of the Mn complex in which the axial CO ligand is replaced by a pyridine or PMe3.
Collapse
Affiliation(s)
- Haitao Sun
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xueqing Liu
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yafeng Li
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Fang Zhang
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiuxiu Huang
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Chuanzhi Sun
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Fang Huang
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
3
|
Singh T, Atreya V, Jalwal S, Anand A, Chakraborty S. Advances in Group VI Metal-Catalyzed Homogeneous Hydrogenation and Dehydrogenation Reactions. Chem Asian J 2023; 18:e202300758. [PMID: 37815164 DOI: 10.1002/asia.202300758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
Transition metal-catalyzed homogeneous hydrogenation and dehydrogenation reactions for attaining plethora of organic scaffolds have evolved as a key domain of research in academia and industry. These protocols are atom-economic, greener, in line with the goal of sustainability, eventually pave the way for numerous novel environmentally benign methodologies. Appealing progress has been achieved in the realm of homogeneous catalysis utilizing noble metals. Owing to their high cost, less abundance along with toxicity issues led the scientific community to search for sustainable alternatives. In this context, earth- abundant base metals have gained substantial attention culminating enormous progress in recent years, predominantly with pincer-type complexes of nickel, cobalt, iron, and manganese. In this regard, group VI chromium, molybdenum and tungsten complexes have been overlooked and remain underdeveloped despite their earth-abundance and bio-compatibility. This review delineates a comprehensive overview in the arena of homogeneously catalysed (de)hydrogenation reactions using group VI base metals chromium, molybdenum, and tungsten till date. Various reactions have been described; hydrogenation, transfer hydrogenation, dehydrogenation, acceptorless dehydrogenative coupling, hydrogen auto transfer, along with their scope and brief mechanistic insights.
Collapse
Affiliation(s)
- Tushar Singh
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Vaishnavi Atreya
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Sachin Jalwal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Aman Anand
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Subrata Chakraborty
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| |
Collapse
|
4
|
Winslow C, Rathke P, Rittle J. Multielectron Bond Cleavage Processes Enabled by Redox-Responsive Phosphinimide Ligands. Inorg Chem 2023; 62:17697-17704. [PMID: 37847032 PMCID: PMC10618924 DOI: 10.1021/acs.inorgchem.3c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 10/18/2023]
Abstract
The activation of small molecules via multielectron redox processes offers promise in mediating difficult transformations related to energy conversion processes. While molecular systems that engage in one- and two-electron redox processes are widespread, those that participate in the direct transfer of four or more electrons to small molecules are very rare. To that end, we report a mononuclear CrII complex competent for the 4-electron reduction of dioxygen (O2) and nitrosoarenes. These systems additionally engage in facile two-electron group transfer reactivity, including O atom excision and nitrene transfer. Structural, spectroscopic, and computational studies support bond activation processes that intimately occur at a mononuclear chromium(phosphinimide) center and highlight the unusual structural responsiveness of the phosphinimides in stabilizing a range of metal redox states.
Collapse
Affiliation(s)
- Charles
C. Winslow
- Department of Chemistry, University
of California, Berkeley, California 94720, United States
| | - Paul Rathke
- Department of Chemistry, University
of California, Berkeley, California 94720, United States
| | - Jonathan Rittle
- Department of Chemistry, University
of California, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Grover J, Maji S, Teja C, Al Thabaiti SA, Mostafa MM, Lahiri GK, Maiti D. Base Metal Catalyst for Indirect Hydrogenation of CO 2. ACS ORGANIC & INORGANIC AU 2023; 3:299-304. [PMID: 37810409 PMCID: PMC10557122 DOI: 10.1021/acsorginorgau.3c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 10/10/2023]
Abstract
We herein report a novel Mn-SNS-based catalyst, which is capable of performing indirect hydrogenation of CO2 to methanol via formylation. In this domain of CO2 hydrogenation, pincer ligands have shown a clear predominance. Our catalyst is based on the SNS-type tridentate ligand, which is quite stable and cheap as compared to the pincer type ligands. The catalyst can also be recycled effectively after the formylation reaction without any significant change in efficiency. Various amines including both primary and secondary amines worked well under the protocol to provide the desired formylated product in good yields. The formed formylated amines can also be reduced further at higher pressures of hydrogen. As a whole, we have developed a protocol that involves indirect CO2 hydrogenation to methanol that proceeds via formylation of amines.
Collapse
Affiliation(s)
- Jagrit Grover
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Suman Maji
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Chitrala Teja
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Shaeel A. Al Thabaiti
- K.
A. CARE Energy Research and Innovation Center, King Abdulaziz University,
Jeddah 21589, Saudi Arabia, Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohamed Mokhtar
M. Mostafa
- K.
A. CARE Energy Research and Innovation Center, King Abdulaziz University,
Jeddah 21589, Saudi Arabia, Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Goutam K. Lahiri
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Fickenscher ZBG, Lönnecke P, Müller AK, Baumann W, Kirchner B, Hey-Hawkins E. Stronger Together! Mechanistic Investigation into Synergistic Effects during Homogeneous Carbon Dioxide Hydrogenation Using a Heterobimetallic Catalyst. Inorg Chem 2023; 62:12750-12761. [PMID: 37506709 DOI: 10.1021/acs.inorgchem.3c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
A series of group 6 heterobimetallic complexes [M0;IrIII] (M = Cr, Mo, W) were synthesized and fully characterized, and the catalytic behavior was studied. The heterobimetallic complex [Mo0;IrIII] (C1) was by far the most active and has shown a considerable synergistic effect, with both metals actively participating in homogeneous carbon dioxide hydrogenation, leading to formate salts. Based on theoretical calculations, the synergistic interaction is due to Pauli repulsion, lowering the transition state and thus enabling higher catalytic activity. The mechanism of both the hydrogenation itself and the synergistic interaction was studied by NMR spectroscopy, kinetic measurements, and theoretical calculations. The homogeneous nature of the reaction was proven using in situ high-pressure (HP) NMR experiments. The same experiments also showed that the octahedral Mo(CO)3P3 moiety of the complex is stable under the reaction conditions. The hydride complex is the resting state because the hydride transfer is the rate-determining step. This is supported by kinetic measurements, in situ HP NMR experiments, and theoretical calculations and is in contrast to the monometallic IrIII counterpart of C1.
Collapse
Affiliation(s)
- Zeno B G Fickenscher
- Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Peter Lönnecke
- Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Anna K Müller
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstraße 4, 53115 Bonn, Germany
| | - Wolfgang Baumann
- Leibniz-Institut für Katalyse eV, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstraße 4, 53115 Bonn, Germany
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| |
Collapse
|
7
|
Fate of an SCS-pincer Mo complex beyond the electrodriven CO2 reduction reaction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|