1
|
Wang B, Chen H, Zhang W, Liu H, Zheng Z, Huang F, Liu J, Liu G, Yan X, Weng YX, Li H, She Y, Chu PK, Xia J. Semimetallic Bismuthene with Edge-Rich Dangling Bonds: Broad-Spectrum-Driven and Edge-Confined Electron Enhancement Boosting CO 2 Hydrogenation Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312676. [PMID: 38290714 DOI: 10.1002/adma.202312676] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Broad-spectrum-driven high-performance artificial photosynthesis is quite challenging. Herein, atomically ultrathin bismuthene with semimetallic properties is designed and demonstrated for broad-spectrum (ultraviolet-visible-near infrared light) (UV-vis-NIR)-driven photocatalytic CO2 hydrogenation. The trap states in the bandgap produced by edge dangling bonds prolong the lifetime of the photogenerated electrons from 90 ps in bulk Bi to 1650 ps in bismuthine, and excited-state electrons are enriched at the edge of bismuthine. The edge dangling bonds of bismuthene as the active sites for adsorption/activation of CO2 increase the hybridization ability of the Bi 6p orbital and O 2p orbital to significantly reduce the catalytic reaction energy barrier and promote the formation of C─H bonds until the generation of CH4. Under λ ≥ 400 nm and λ ≥ 550 nm irradiation, the utilization ratios of photogenerated electron reduction CO2 hydrogenation to CO and CH4 for bismuthene are 58.24 and 300.50 times higher than those of bulk Bi, respectively. Moreover, bismuthene can extend the CO2 hydrogenation reaction to the near-infrared region (λ ≥ 700 nm). This pioneering work employs the single semimetal element as an artificial photosynthetic catalyst to produce a broad spectral response.
Collapse
Affiliation(s)
- Bin Wang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Hailong Chen
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
| | - Heyuan Liu
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Fangcheng Huang
- Department of Information Engineering, Electronics, and Telecommunications, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma, 00185, Italy
| | - Jinyuan Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Gaopeng Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
| | - Xingwang Yan
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
| | - Yu-Xiang Weng
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Jiexiang Xia
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
| |
Collapse
|
2
|
Mahadik MA, Anushkkaran P, Chae WS, Lee HH, Cho M, Jang JS. TiO 2 nanorod/nanotube interface reconstruction and synergistic role of oxygen vacancies and gold in H-Au-TiO 2 NR/NT for photoelectrochemical bacterial inactivation and water splitting. CHEMOSPHERE 2023; 341:139968. [PMID: 37643649 DOI: 10.1016/j.chemosphere.2023.139968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Photoelectrochemical (PEC) water splitting by semiconductor photoanodes is limited by sluggish water oxidation kinetics coupled with serious charge recombinations. In this paper, an effective strategy of TiO2 nanorod/nanotube nanostructured interface reconstruction, oxygen vacancies and surface modification were employed for stability and efficient charge transport in the photoanodes. Successive anodization and hydrothermal routes were adopted for the TiO2 NR/NT photoanodes interface reconstruction, followed by Au nanoparticles/clusters (Au NP) loading and hydrogen treatment. This resulted in H-Au-TiO2 NR/NT photoanodes. A three-dimensional structure of TiO2 NR on TiO2 NT/Ti foil nanotubes achieved the highest photocurrent density (1.42 mA cm-2 at 0.3 V vs. Ag/AgCl). The optimal oxygen vacancies and Au NP loading on TiO2 NR/NT exhibited 1.62 mA cm-2 photocurrent density at 0.3 V vs. Ag/AgCl in H-Au-TiO2 NR/NT photoelectrode, which is eight times higher than the TiO2 NT/Ti foil. TRPL analyses confirm the hydrogen treatments to TiO2 exhibited the emission lifetime (46 ns) in the H-Au-TiO2 NR/NT photoanodes due to newly formed lower Ti3+-related trapped electron states and Au NP. The optimum H-Au (4)-TiO2 NR/NT photoanodes achieved 95% photoelectrochemical (PEC) bacterial inactivation and effective PEC water splitting with (278 and 135.4) μmol of hydrogen and oxygen generation, respectively. In this study, oxygen vacancies combined with gold particles and interface reconstruction provide an innovative way to design effective photoelectrodes.
Collapse
Affiliation(s)
- Mahadeo A Mahadik
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Periyasamy Anushkkaran
- Department of Integrative Environmental Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Weon-Sik Chae
- Daegu Center, Korea Basic Science Institute, Daegu, 41566, Republic of Korea
| | - Hyun Hwi Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Min Cho
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jum Suk Jang
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea; Department of Integrative Environmental Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
3
|
Li M, Du Q, Li G, Qian L, Zeng Y. Metal organic framework-derived transition metal-doped CoS x nanocage for enhanced visible light-assisted methanol electrocatalytic oxidation. Phys Chem Chem Phys 2023; 25:27331-27341. [PMID: 37791573 DOI: 10.1039/d3cp03002d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Designing noble metal-free anode catalysts for visible light-assisted direct methanol fuel cells still remains a significant challenge. In this study, combining the photocatalytic and electrocatalytic properties of CoSx, a visible light-assisted methanol electrocatalytic oxidation strategy was provided. Doping engineering was employed to adjust the electronic structure of CoSx and improve their photoassisted methanol electrocatalytic oxidation activity. Using ZIF-67 as precursor, transition metal-doped CoSx (M-CoSx, M = Zn, Cu, Ni, and Cd) nanocage was synthesized by cation exchange and L-cysteine-controlled etching. Cd doping not only widens the light adsorption to the visible region but also enhances the separation efficiency of photogenerated electron-hole pairs. The electrochemical and photochemical results indicated that the strong oxidative photogenerated hole, OH˙, and O2˙- are beneficial for methanol electrocatalytic oxidation. The synergistic electrocatalytic and photocatalytic effect will be a practical strategy for improving the methanol electrocatalytic oxidation activity of noble metal-free semiconductor catalysts.
Collapse
Affiliation(s)
- Meng Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, China.
| | - Quan Du
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, China.
| | - Guanfeng Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, China.
| | - Lei Qian
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, China.
| | - Ying Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, China.
| |
Collapse
|
4
|
Shi Q, Zhang X, Li Z, Raza A, Li G. Plasmonic Au Nanoparticle of a Au/TiO 2-C 3N 4 Heterojunction Boosts up Photooxidation of Benzyl Alcohol Using LED Light. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37336763 DOI: 10.1021/acsami.3c03451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Plasmonic Au nanoparticles (NPs) employing localized surface plasmon resonance excitation have exhibited superior visible light absorption for many organic transformations. In this work, we prepared a ternary composite catalyst comprising plasmonic Au NPs and a 2D/2D TiO2-C3N4 heterojunction via a photoreduction method of chloroauric acid in the presence of TiO2-C3N4. The introduction of plasmonic nanogold particles embedded onto the TiO2 surface of the TiO2-C3N4 heterojunction can significantly improve the photocatalytic performance during photooxidation of benzyl alcohol to benzaldehyde under mild conditions (1 bar air, white LED irradiation at ambient temperature). The productivity over Au/TiO2-C3N4 (0.25 mmolreacted BA gcat.-1 h-1) is found to be ∼5.6, 8.3, and 8.2-fold of these over the Au/TiO2, TiO2-C3N4, and C3N4-Au-TiO2 heterojunctions, respectively. Trapping experiments and electron spin resonance (ESR) spectroscopy confirm that the superoxide (·O2-) and hydroxyl radicals (·OH) act as the reactive oxygen species during photooxidation. Furthermore, the experimental results combined with density functional theory calculations reveal that the chemisorbed benzyl alcohol population, surface oxygen vacancies, and lifetime of photoexcited electrons and holes are largely improved by plasmonic Au NPs. This study on nanogold composites provides some hints for developing new efficient and practical photocatalysts.
Collapse
Affiliation(s)
- Quanquan Shi
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource & Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China
| | - Xinyu Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhiwen Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali Raza
- Department of Physics "Ettore Pancini", University of Naples Federico II, Piazzale Tecchio, 80, 80125 Naples, Italy
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
He Q, Wang X, Liu Y, Kong W, Ren S, Liang Y, Tang M, Zhou S, Dong Y. The Enhancement of CO Oxidation Performance and Stability in SO 2 and H 2S Environment on Pd-Au/FeO X/Al 2O 3 Catalysts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103755. [PMID: 37241390 DOI: 10.3390/ma16103755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Carbon monoxide (CO) is a colourless, odourless, and toxic gas. Long-term exposure to high concentrations of CO causes poisoning and even death; therefore, CO removal is particularly important. Current research has focused on the efficient and rapid removal of CO via low-temperature (ambient) catalytic oxidation. Gold nanoparticles are widely used catalysts for the high-efficiency removal of high concentrations of CO at ambient temperature. However, easy poisoning and inactivation due to the presence of SO2 and H2S affect its activity and practical application. In this study, a bimetallic catalyst, Pd-Au/FeOx/Al2O3, with a Au:Pd ratio of 2:1 (wt%) was formed by adding Pd nanoparticles to a highly active Au/FeOx/Al2O3 catalyst. Its analysis and characterisation proved that it has improved catalytic activity for CO oxidation and excellent stability. A total conversion of 2500 ppm of CO at -30 °C was achieved. Furthermore, at ambient temperature and a volume space velocity of 13,000 h-1, 20,000 ppm CO was fully converted and maintained for 132 min. Density functional theory (DFT) calculations and in situ FTIR analysis revealed that Pd-Au/FeOx/Al2O3 exhibited stronger resistance to SO2 and H2S adsorption than the Au/FeOx/Al2O3 catalyst. This study provides a reference for the practical application of a CO catalyst with high performance and high environmental stability.
Collapse
Affiliation(s)
- Qingrong He
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of NBC Protection for Civilian, Beijing 100083, China
| | - Xuwei Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 100083, China
| | - Yimeng Liu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of NBC Protection for Civilian, Beijing 100083, China
| | - Weimin Kong
- State Key Laboratory of NBC Protection for Civilian, Beijing 100083, China
| | - Shanshan Ren
- State Key Laboratory of NBC Protection for Civilian, Beijing 100083, China
| | - Yun Liang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Min Tang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuyuan Zhou
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of NBC Protection for Civilian, Beijing 100083, China
| | - Yanchun Dong
- State Key Laboratory of NBC Protection for Civilian, Beijing 100083, China
| |
Collapse
|
6
|
Zhao B, Zhang X, Mao J, Wang Y, Zhang G, Zhang ZC, Guo X. Crystal-Plane-Dependent Guaiacol Hydrodeoxygenation Performance of Au on Anatase TiO2. Catalysts 2023. [DOI: 10.3390/catal13040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
TiO2-supported catalysts have been widely used for a range of both liquid-phase and gas-phase hydrogenation reactions. However, little is known about the effect of their different crystalline surfaces on their activity during the hydrodeoxygenation process. In this work, Au supported on anatase TiO2, mainly exposing 101 or 001 facets, was investigated for the hydrodeoxygenation (HDO) of guaiacol. At 300 °C, the strong interaction between the Au and TiO2-101 surface resulted in the facile reduction of the TiO2-101 surface with concomitant formation of oxygen vacancies, as shown by the H2-TPR and H2-TPD profiles. Meanwhile, the formation of Auδ−, as determined by CO-DRIFT spectra and in situ XPS, was found to promote the demethylation of guaiacol producing methane. However, this strong interaction was absent on the Au/TiO2-001 catalyst since TiO2-001 was relatively difficult to be reduced compared with TiO2-101. The Au on TiO2-001 just served as the active site for the dissociation of hydrogen without the formation of Auδ−. The hydrogen atoms spilled over to the surface of TiO2-001 to form a small amount of oxygen vacancies, which resulted in lower activity than that over Au/TiO2-101. The catalytic activity of the Au/TiO2 catalyst for hydrodeoxygenation will be controlled by tuning the crystal plane of the TiO2 support.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoqiang Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jingbo Mao
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Yanli Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zongchao Conrad Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Zhu Q, Sugawara Y, Li Y. Exploration of CO movement characteristics on rutile TiO2(110) surface. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|