1
|
Li X, Liu RH, Han XK, Ma XX, Zhang L, Zhu HJ, Kong XJ, Li X, Yan H, Zhou HW, Li YW, Wang SN, Zhong DC, Dai FN, Dou MY, Hao HG. Enhancing Photoreduction of Cr(VI) through a Multivalent Manganese(II)-Organic Framework Incorporating Anthracene Moieties. Inorg Chem 2024; 63:16897-16907. [PMID: 39197012 DOI: 10.1021/acs.inorgchem.4c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Exploiting a photocatalyst with high stability and excellent activity for Cr(VI) reduction under mild conditions is crucial yet challenging. Herein, the rigid aromatic multicarboxylate ligand with chromophore anthracene was selected to coordinate with multivalent metal ion manganese and to obtain a stable two-dimensional (2D) Mn-based metal-organic framework (MOF), LCUH-120, which can efficiently and quickly convert Cr(VI) into Cr(III) under light without the need for any additional photosensitizer. The efficient photosensitive anthracene group serves as a photosensitizer center and multivalent Mn(II) ion as a photocatalyst center in LCUH-120, and the conversion of Cr(VI) to Cr(III) can be realized completely in just 40 min. Specifically, the rate constant (k) and reduction rate of the Cr(VI) photocatalytic reaction can be high up to 0.134 min-1 and 2.50 mgCr(VI) g-1cata min-1 in an acidic environment (pH = 2), respectively. Compared to our previously reported three-dimensional (3D) Sm-MOF, LCUH-120 exhibits a significantly higher catalytic reaction rate, which might be ascribed to the fact that the photocatalyst center Mn node can improve the rate of electron transfer and promote the separation of holes and photogenerated electrons. In an acidic environment, the reaction mechanism can be verified through various contrast experiments and theoretical simulations.
Collapse
Affiliation(s)
- Xin Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Rong-Hua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xue-Ke Han
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiao-Xue Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hong-Jie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiang-Jin Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hua-Wei Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yun-Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Su-Na Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology, Tianjin 300384, China
| | - Fang-Na Dai
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Ming-Yu Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hong-Guo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
2
|
Jin C, Liu J, Yin Y, Li Z. WO 3/MIL-125 (Ti) composite material for enhancing the reduction of Cr(vi) under visible light. RSC Adv 2024; 14:5142-5148. [PMID: 38332795 PMCID: PMC10851057 DOI: 10.1039/d4ra00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
In wastewater containing heavy metals, Cr(vi) is a potentially toxic metal, mainly derived from production and processing processes such as textile printing, dyeing, ore mining, battery applications, metal cleaning and electroplating. WO3 is widely used in photocatalytic degradation and reduction, and its utilization rate of visible light is high. However, the rapid recombination of photogenerated electron-hole pairs of WO3 limits its use. In this work, the composite material (WxMy) of WO3 and MIL-125 (Ti) was prepared by the ball milling method, and the catalyst was used to photocatalytically reduce Cr(vi). After using W90M10 as a photocatalyst for 50 min, the reduction rate of Cr(vi) can reach 99.2%, and the reduction rate is 2.3 times that of WO3. After 5 cycles of use, the reduction rate can still reach 91.3%. It is mainly due to the formation of a II-type heterojunction between WO3 and MIL-125 (Ti), which promotes the separation of photogenerated electron-hole pairs, thus improving the efficiency of photocatalytic reduction of Cr(vi).
Collapse
Affiliation(s)
- Chunhong Jin
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | | | - Yilin Yin
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Zenghe Li
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
3
|
Wang G, Cheng H. Recyclable MXene-bridged Z-scheme NiFe 2O 4/MXene/Bi 2WO 6 heterojunction with enhanced charge separation for efficient sonocatalytic removal of ciprofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165833. [PMID: 37517721 DOI: 10.1016/j.scitotenv.2023.165833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Sonocatalysis has emerged as a promising technology for addressing environmental pollution issues. However, the efficacy of sonocatalytic processes is primarily hindered by challenges related to the sluggish flow rate of photogenerated electrons. This study presents a novel approach to address this issue by developing an improved Z-scheme NiFe2O4/MXene/Bi2WO6 (NMB) composite that exhibits exceptional sonocatalytic activity for ciprofloxacin (CIP) degradation. In particular, the NiFe2O4/MXene (5 wt%)/Bi2WO6 composite could achieve high CIP (at 10 mg/L) degradation efficiency (97.39 %) after 60 min of ultrasonic irradiation. The exceptional sonocatalytic activity of the composite was attributed to the synergistic interaction of the Z-scheme heterojunction charge transfer route and the electron mediator of Ti3C2-MXene, which enhances light collection capacity, separates photogenerated carriers efficiently, and improves redox activity of the composite. The scavenging experiments reveal that the sonocatalytic degradation of CIP was driven by holes (h+), hydroxyl radicals (•OH), and superoxide anion radicals (•O2-), with the former playing a dominant role. The results of reuse experiments demonstrate the outstanding sonocatalytic stability of the catalyst, as well as its uncomplicated recovery. The developed NMB Z-scheme composite shows promise for sonocatalytic treatment of antibiotics in industrial wastewaters, particularly those with high turbidity and/or low transparency. The findings also open up avenues for developing efficient and cost-effective sonocatalysts with good recyclability and remarkable performance.
Collapse
Affiliation(s)
- Guowei Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
4
|
Chen D, Jin Z, Xing H. Titanium-Porphyrin Metal-Organic Frameworks as Visible-Light-Driven Catalysts for Highly Efficient Sonophotocatalytic Reduction of Cr(VI). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12292-12299. [PMID: 36179378 DOI: 10.1021/acs.langmuir.2c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, we synthesized and characterized four titanium-porphyrin metal-organic frameworks (MOFs) [DGIST-1(M), M = Co(II), Fe(III), Zn(II), and H2] and used them as visible-light-driven catalysts for sonophotocatalytic Cr(VI) reduction. DGIST-1(M) exhibited open-framework, broad light absorption stemmed from ligand and sensitive photocurrent responses owing to the integration of one-dimensional Ti-oxo chains and 4-connected conjugated TCPP ligand (TCPP = tetrakis(4-carboxyphenyl)-porphyrin). DGIST-1(M) presented efficient reduction of Cr(VI) to Cr(III) in aqueous solution when used as sonophotocatalytic catalysts. The average reduction rates upon Cr(VI) were 0.920, 0.476, 0.377, and 0.194 mg·L-1·min-1 for DGIST-1(H2), DGIST-1(Zn), DGIST-1(Co), and DGIST-1(Fe), which are 1.15-2.45 times higher than those in photocatalysis. Sonophotocatalytic experiments and electron paramagnetic resonance measurement proved that Ti-oxo chain units and porphyrin ligand in the structures of DGIST-1(M) existed as catalytic active centers for sonophotocatalytic reduction of Cr(VI). Photoluminescence and UV absorption spectra revealed that the unity of photocatalysis and sonochemistry strengthened the migration of photogenerated electrons from DGIST-1(M) to Cr(VI), which improved the activities of catalysts. This study suggested that the association of titanium-porphyrin MOFs and sonophotocatalytic technology is an impactful program for enhancing MOF-based photocatalytic systems.
Collapse
Affiliation(s)
- Dashu Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin150040, China
| | - Zhi Jin
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin150040, China
| | - Hongzhu Xing
- College of Chemistry, Northeast Normal University, No. 5268 Renmin Street, Changchun130024, China
| |
Collapse
|
5
|
Jafarzadeh M. Recent Progress in the Development of MOF-Based Photocatalysts for the Photoreduction of Cr (VI). ACS APPLIED MATERIALS & INTERFACES 2022; 14:24993-25024. [PMID: 35604855 DOI: 10.1021/acsami.2c03946] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There has been a direct correlation between the rate of industrial development and the spread of pollution on Earth, particularly in the last century. The organic and inorganic pollutants generated from industrial activities have created serious risks to human life and the environment. The concept of sustainability has emerged to tackle the environmental issues in developing chemical-based industries. However, pollutants have continued to be discharged to water resources, and finding appropriate techniques for the removal and remedy of wastewater is in high demand. Chromium is one of the high-risk heavy metals in industrial wastewaters that should be removed via physical adsorption and/or transformed into less hazardous chemicals. Photocatalysis as a sustainable process has received considerable attention as it utilizes sunlight irradiation to remedy Cr(VI) via a cost-effective process. Numerous photocatalytic systems have been developed up to now, but metal-organic frameworks (MOFs) have gained growing attention because of their unique versatilities and facile structural modulations. A variety of MOF-based photocatalysts have been widely employed for the photoreduction of Cr(VI). Here, we review the recent progress in the design of MOF photocatalysts and summarize their performance in photoreduction reactions.
Collapse
|
6
|
Ding L, Sun Q, Yu Z, Sun L, Jiang R, Hou Y, Huang J, Zhong T, Chen H, Lian C, Fan B. Adjusting the match-degree between electron library and surface-active sites and forming surface polarization in MOF-based photo-cocatalysts for accelerating electron transfer. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ni-CoP supported by a carbon matrix as the cocatalyst is synthesized by precisely controlling the pyrolysis temperature for the metal–organic framework, then loaded onto the CdS host catalyst by means of self-assembly for photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Ling Ding
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Qianqian Sun
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Zebin Yu
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Lei Sun
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
| | - Ronghua Jiang
- School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan 512005, P. R. China
| | - Yanping Hou
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Jun Huang
- College of Civil Engineering & Architecture, Guangxi University, Nanning 530004, P. R. China
| | - Tao Zhong
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Huajiao Chen
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - CuiFang Lian
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Ben Fan
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| |
Collapse
|