1
|
Chillal AS, Maurya C, Kshirsagar UA. Micelle-Assisted C(sp 2)-H Functionalization for C-Se and C-X Bond Formation in the Aqueous Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23445-23457. [PMID: 39433481 DOI: 10.1021/acs.langmuir.4c03052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
An environmentally sustainable, versatile, and cost-effective approach for C-Se and C-X (X = I, Br, and Cl) bond formation through C-H functionalization assisted by micellar catalysis in water is developed. The reaction utilizes a minimum amount of diorganyl diselenides and potassium halides for the respective functionalizations. The present protocol was suitable for scale-up synthesis, which directly provided the desired selenylated products without the need for chromatographic purification, in sufficient purity. The aqueous micellar catalysis system was reusable for up to 5 reaction cycles without compromising the reaction yield.
Collapse
Affiliation(s)
- Abhinay S Chillal
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Chandani Maurya
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Umesh A Kshirsagar
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| |
Collapse
|
2
|
Chillal AS, Bhawale RT, Sharma S, Kshirsagar UA. Electrochemical Regioselective C(sp 2)-H Bond Chalcogenation of Pyrazolo[1,5- a]pyrimidines via Radical Cross-Coupling at Room Temperature. J Org Chem 2024; 89:14496-14504. [PMID: 39283698 DOI: 10.1021/acs.joc.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Herein, we disclose an electrochemical approach for the C(sp2)-H chalcogenation of pyrazolo[1,5-a]pyrimidines. This technique offers an oxidant and catalyst-free protocol for achieving regioselective chalcogenation of pyrazolo[1,5-a]pyrimidines. The procedure uses only 0.5 equiv. of diaryl chalcogenides which underscores the atom economy of the protocol. Key attributes of this methodology include mild reaction conditions, short reaction time, utilization of cheap electrode materials, and eco-friendly reaction conditions. Cyclic voltammetry studies and radical quenching experiments revealed a radical cross-coupling pathway for the reaction mechanism.
Collapse
Affiliation(s)
- Abhinay S Chillal
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Rajesh T Bhawale
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Siddharth Sharma
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Umesh A Kshirsagar
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| |
Collapse
|
3
|
Ren ML, Gong XR, Chen YY, Xu YL. Visible-light-promoted selenylation/cyclization of o-(1-alkynyl) benzoates to access seleno-substituted isocoumarins. Org Biomol Chem 2024; 22:7327-7331. [PMID: 39175396 DOI: 10.1039/d4ob01010h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A simple and efficient method to access 4-selenyl-isocoumarin derivatives through visible-light-promoted selenylation/cyclization of o-(1-alkynyl) benzoates has been developed. This transformation is performed under mild conditions and has the advantages of functional group tolerance and broad substrate scope.
Collapse
Affiliation(s)
- Mei-Lin Ren
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi, China..
| | - Xi-Rui Gong
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi, China..
| | - Yan-Yan Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi, China..
| | - Yan-Li Xu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi, China..
| |
Collapse
|
4
|
Purohit S, Rana R, Tyagi A, Bahuguna A, Oswal P, Anshika, Kumar A. Organosulphur and organoselenium compounds as ligands for catalytic systems in the Sonogashira coupling. Org Biomol Chem 2024; 22:6215-6245. [PMID: 38873754 DOI: 10.1039/d4ob00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Sonogashira coupling is a reaction of aryl/vinyl halides with terminal alkynes. It is used for the synthesis of conjugated enynes. Generally, copper (Cu) is required as a mediator for this reaction. It requires a long reaction time, high catalyst loading, or expensive ligands. Recently, homogeneous, heterogeneous, and nanocatalysts have been developed using organosulphur and organoselenium compounds as building blocks. Preformed complexes of metals with organosulphur and organoselenium ligands are used for homogeneous catalysis. Heterogeneous catalytic systems have also been developed using Cu, Pd, and Ni as metals. The nanocatalytic systems (synthesized using such ligands) include copper selenides and stabilized palladium(0) nanospecies. This article aims to cover the developments in the field of the processes and techniques used so far to generate catalytically relevant organic ligands having sulphur or selenium donor sites, the utility of such ligands in the syntheses of homogeneous, heterogeneous, and nanocatalytic systems, and critical analysis of their application in the catalysis of this coupling reaction. The results of catalysis are analyzed in terms of the effects of the S/Se donor, halogen atom of aryl halide, the effect of the presence/absence of electron-withdrawing or electron-donating groups or substituents on the aromatic ring of haloarenes/substituted phenylacetylenes, as well as the position (ortho or para) of the substitution. Substrate scope is discussed for all the kinds of catalysis. The supremacy of heterogeneous and nanocatalytic systems indicates promising future prospects.
Collapse
Affiliation(s)
- Suraj Purohit
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Ramakshi Rana
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Anupma Tyagi
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Preeti Oswal
- Department of Chemistry, Texas A&M University, College Station, 77842-3012, USA
| | - Anshika
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| |
Collapse
|
5
|
Singh S, Shinde VN, Kumar S, Meena N, Bhuvanesh N, Rangan K, Kumar A, Joshi H. Mono and Dinuclear Palladium Pincer Complexes of NNSe Ligand as a Catalyst for Decarboxylative Direct C-H Heteroarylation of (Hetero)arenes. Chem Asian J 2023; 18:e202300628. [PMID: 37602812 DOI: 10.1002/asia.202300628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
This report describes the synthesis of a new NNSe pincer ligand and its mono- and dinuclear palladium(II) pincer complexes. In the absence of a base, a dinuclear palladium pincer complex (C1) was isolated, while in the presence of Et3 N base a mononuclear palladium pincer complex (C2) was obtained. The new ligand and complexes were characterized using techniques like 1 H, 13 C{1 H} nuclear magnetic resonance (NMR), fourier transform infrared (FTIR), high-resolution mass spectrometry (HRMS), ultraviolet-visible (UV-Visible), and cyclic voltammetry. Both the complexes showed pincer coordination mode with a distorted square planar geometry. The complex C1 has two pincer ligands attached through a Pd-Pd bond in a dinuclear pincer fashion. The air and moisture-insensitive, thermally robust palladium pincer complexes were used as the catalyst for decarboxylative direct C-H heteroarylation of (hetero)arenes. Among the complexes, dinuclear pincer complex C1 showed better catalytic activity. A variety of (hetero)arenes were successfully activated (43-87 % yield) using only 2.5 mol % of catalyst loading under mild reaction conditions. The PPh3 and Hg poisoning experiments suggested a homogeneous nature of catalysis. A plausible reaction pathway was proposed for the dinuclear palladium pincer complex catalyzed decarboxylative C-H bond activation reaction of (hetero)arenes.
Collapse
Affiliation(s)
- Sohan Singh
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Sunil Kumar
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas, 77842-3012, USA
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana, 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Hemant Joshi
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| |
Collapse
|
6
|
Zhao MY, Tang YF, Han GZ. Recent Advances in the Synthesis of Aromatic Azo Compounds. Molecules 2023; 28:6741. [PMID: 37764517 PMCID: PMC10538219 DOI: 10.3390/molecules28186741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Aromatic azo compounds have -N=N- double bonds as well as a larger π electron conjugation system, which endows aromatic azo compounds with wide applications in the fields of functional materials. The properties of aromatic azo compounds are closely related to the substituents on their aromatic rings. However, traditional synthesis methods, such as the coupling of diazo salts, have a significant limitation with respect to the structural design of aromatic azo compounds. Therefore, many scientists have devoted their efforts to developing new synthetic methods. Moreover, recent advances in the synthesis of aromatic azo compounds have led to improvements in the design and preparation of light-response materials at the molecular level. This review summarizes the important synthetic progress of aromatic azo compounds in recent years, with an emphasis on the pioneering contribution of functional nanomaterials to the field.
Collapse
Affiliation(s)
| | | | - Guo-Zhi Han
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (M.-Y.Z.); (Y.-F.T.)
| |
Collapse
|
7
|
Shi J, Wang Z, Teng X, Zhang B, Sun K, Wang X. Electro-Oxidative C3-Selenylation of Pyrido[1,2- a]pyrimidin-4-ones. Molecules 2023; 28:molecules28052206. [PMID: 36903450 PMCID: PMC10005275 DOI: 10.3390/molecules28052206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
In this work, we achieved a C3-selenylation of pyrido[1,2-a]pyrimidin-4-ones using an electrochemically driven external oxidant-free strategy. Various structurally diverse seleno-substituted N-heterocycles were obtained in moderate to excellent yields. Through radical trapping experiments, GC-MS analysis and cyclic voltammetry study, a plausible mechanism for this selenylation was proposed.
Collapse
Affiliation(s)
- Jianwei Shi
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Zhichuan Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaoxu Teng
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Bing Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (B.Z.); (X.W.)
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- Correspondence: (B.Z.); (X.W.)
| |
Collapse
|
8
|
Abd El-Lateef HM, Khalaf MM, Gouda M, Shalabi K, El‑Taib Heakal F, Al-Janabi AS, Shaaban S. Novel water-soluble organoselenocyanates and symmetrical diselenides tethered N-succinanilate and N-maleanilate as corrosion inhibitors for reinforced steel in the simulated concrete pore solution. CONSTRUCTION AND BUILDING MATERIALS 2023; 366:130135. [DOI: 10.1016/j.conbuildmat.2022.130135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Jiang YQ, Wang YH, Zhou CF, Zhang YQ, Ling Y, Zhao Y, Liu GQ. N-Fluorobenzenesulfonimide-Mediated Intermolecular Carboselenenylation of Olefins with Aromatics and Diselenides. J Org Chem 2022; 87:14609-14622. [DOI: 10.1021/acs.joc.2c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- You-Qin Jiang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Yong-Hao Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Chen-Fan Zhou
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Yun-Qian Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Yu Zhao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Gong-Qing Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| |
Collapse
|
10
|
Novel organoselenium-based N-mealanilic acid and its zinc (II) chelate: Catalytic, anticancer, antimicrobial, antioxidant, and computational assessments. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Arora A, Oswal P, Sharma D, Tyagi A, Purohit S, Sharma P, Kumar A. Molecular Organosulphur, Organoselenium and Organotellurium Complexes as Homogeneous Transition Metal Catalytic Systems for Suzuki Coupling. ChemistrySelect 2022. [DOI: 10.1002/slct.202201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aayushi Arora
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Preeti Oswal
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Deepali Sharma
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Anupma Tyagi
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Suraj Purohit
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Pankaj Sharma
- Instituto de Química National Autonomous University of Mexico (UNAM) Circuito Exterior Mexico 04510
| | - Arun Kumar
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| |
Collapse
|
12
|
Bhatt S, Meena N, Kumar M, Bhuvanesh N, Kumar A, Sharma AK, Joshi H. Design and Syntheses of Ruthenium ENE (E = S, Se) Pincer Complexes: A Versatile System for Catalytic and Biological Applications. Chem Asian J 2022; 17:e202200736. [PMID: 36065146 DOI: 10.1002/asia.202200736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Indexed: 11/09/2022]
Abstract
This report describes synthesis of two ruthenium(II) ENE pincer complexes (E = S, C1 and E = Se, C2 ) by the reaction of bis(2-(phenylchalcogenyl)ethyl)amine ( L1 , L2 ) with RuCl 2 (PPh 3 ) 3 . The complexes were characterized with the help of 1 H and 13 C{ 1 H} NMR, FTIR, HRMS, cyclic voltammetry and elemental analysis techniques. The structure and bonding mode of ligand with ruthenium in C2 was established with the help of single crystal X-ray diffraction. The complex showed distorted octahedral geometry with two chlorine atoms trans to each other. The Ru-Se bond distances (Å) are 2.4564(3)-2.4630(3), Ru-N distance is 2.181(2), Ru-P distance is 2.2999(6), and Ru-Cl distances are 2.4078(6)-2.4314(6). The complexes showed good to excellent catalytic activity for the N -alkylation of 1,2-phenylenediamine with benzyl alcohol derivatives to synthesize 1,2-disubstituted benzimidazole derivatives. The complexes were also found to be efficient for aerobic oxidation of benzyl alcohols to corresponding aldehydes which are precursors to the bisimines generated in situ during the synthesis of 1,2-disubstituted benzimidazole derivatives. Complex C2 where selenium is coordinated with ruthenium was found to be more efficient as compared to sulfur coordinated ruthenium complex C1 . Since ruthenium complexes are getting increasing attention for developing new anticancer agents, the preliminary studies like binding behavior of both the complexes towards CT-DNA were studied by competitive binding with ethidium bromide (EthBr) using emission spectroscopy. In addition, the interactions of C1-C2 were also studied with bovine serum albumin (BSA) using steady state fluorescence quenching and synchronous fluorescence studies. A good stability of Ru(II) state was observed by cyclic voltammetric studies of C1-C2 . Overall these molecules are good examples of bio-organometallic systems for catalytic and biological applications.
Collapse
Affiliation(s)
| | - Neha Meena
- BITS Pilani: Birla Institute of Technology and Science, Chemistry, INDIA
| | - Mukesh Kumar
- Central University of Rajasthan, Chemistry, INDIA
| | - Nattamai Bhuvanesh
- Texas A&M University College Station: Texas A&M University, Chemistry, INDIA
| | - Anil Kumar
- BITS: Birla Institute of Technology & Science Pilani, Chemistry, INDIA
| | | | - Hemant Joshi
- Central University of Rajasthan, Ajmer, Chemistry, Department of Chemistry, Central University of Rajasthan, 305817, Bandarsindri, Ajmer, INDIA
| |
Collapse
|
13
|
An efficient and sustainable synthesis of morpholino-1,4-dihydropyridine-2,3-dicarboxylates using recyclable SeO2/HAp catalyst. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Shaaban S, Ferjani H, Abd El-Lateef HM, Khalaf MM, Gouda M, Alaasar M, Yousef TA. Unexpected kinetically controlled organoselenium-based isomaleimide: X-ray structure, hirshfeld surface analysis, 3D energy framework approach, and density functional theory calculation. Front Chem 2022; 10:961787. [PMID: 35991613 PMCID: PMC9388736 DOI: 10.3389/fchem.2022.961787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Reduction of 4,4′-diselanediyldianiline (1) followed by the reaction with bromo-4-(bromomethyl)benzene afforded the corresponding 4-((4-bromobenzyl)selanyl)aniline (2) in 85% yield. N-Maleanilic acid 3 was obtained in 94% yield via the reaction of selenoamine 2 with toxilic anhydride. Subsequent dehydration of N-maleanilic acid 3 using acetic anhydride furnished the unexpected isomaleimide 5-((4-((4-bromophenyl)selanyl)phenyl)imino)furan-2(5H)-one (4) instead of the maleimide 5. The molecular structure of compound 4 was confirmed by mass spectrometry, 1H- and 13C-NMR spectroscopy, and X-ray diffraction analysis. Their cytotoxicity was assessed against two oligodendrocytes, and their respective redox properties were evaluated using 2′,7′-dichlorodihydrofluorescein diacetate (H2-DCFDA) assay. Furthermore, their antiapoptotic potential was also evaluated by flow cytometry. The compound crystallizes in triclinic P-1 space group with unit cell parameters a = 5.7880 (4) Å, b = 9.8913 (6) Å, c = 14.5951 (9) Å, V = 1731.0 (3) Å3 and Z = 2. The crystal packing is stabilized by intermolecular hydrogen bonding, π···π, C-Br···π stacking interactions, and other non-covalent interactions. The mapping of different Hirshfeld surfaces and 2D-fingerprint were used to investigate intermolecular interactions. The interaction energies that stabilize the crystal packing were calculated and graphically represented as framework energy diagrams. We present a computational investigation of compound 4’s molecular structure at the Density Functional Theory level using the B3LYP method and the 6-31G ++ basis set in this paper. The optimized structure matches the experimental outcome. The global reactivity descriptors and molecular electrostatic potential (M.E.P.) map emphasize the molecule’s reactive locations, allowing reactivity prediction. The charge transfer properties of molecules can be estimated by examining Frontier molecular orbitals.
Collapse
Affiliation(s)
- Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Chemistry, Organic Chemistry Division, College of Science, Mansoura University, Mansoura, Egypt
- *Correspondence: Saad Shaaban, , ; Mohamed Alaasar, ; Tarek A. Yousef,
| | - Hela Ferjani
- Department of Chemistry, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), Riyadh, Saudi Arabia
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al Hofuf, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al Hofuf, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al Hofuf, Saudi Arabia
| | - Mohamed Alaasar
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- *Correspondence: Saad Shaaban, , ; Mohamed Alaasar, ; Tarek A. Yousef,
| | - Tarek A. Yousef
- Department of Chemistry, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), Riyadh, Saudi Arabia
- Toxic and Narcotic Drug, Forensic Medicine Department, Mansoura Laboratory, Medicolegal Organization, Ministry of Justice, Cairo, Egypt
- *Correspondence: Saad Shaaban, , ; Mohamed Alaasar, ; Tarek A. Yousef,
| |
Collapse
|
15
|
|
16
|
Tellurium-Ligated Pd(II) Complex of Bulky Organotellurium Ligand as a Catalyst of Suzuki coupling: First Report on In Situ Generation of Bimetallic Alloy ‘Telluropalladinite’ (Pd9Te4) Nanoparticles and Role in Highly Efficient Catalysis. Catal Letters 2022. [DOI: 10.1007/s10562-021-03769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Wang YH, Zhang YQ, Zhou CF, Jiang YQ, Xu Y, Zeng X, Liu GQ. Iodine pentoxide-mediated oxidative selenation and seleno/thiocyanation of electron-rich arenes. Org Biomol Chem 2022; 20:5463-5469. [PMID: 35772180 DOI: 10.1039/d2ob00892k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A simple and efficient method for the regioselective selenation of electron-rich arenes by employing non-metal inorganic iodine pentoxide (I2O5) as a reaction promoter under ambient conditions has been developed. The present protocol showed broad functional group tolerance and easy-to-operate and time-economical features. Additionally, this protocol also allows access to 3-seleno and 3-thiocyanoindoles by the use of readily available selenocyanate and thiocyanate salts. A mechanistic study indicated that the transformation operated through selenenyl iodide-induced electrophilic substitution processes.
Collapse
Affiliation(s)
- Yong-Hao Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Yun-Qian Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Chen-Fan Zhou
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - You-Qin Jiang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Yue Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Xiaobao Zeng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Gong-Qing Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| |
Collapse
|
18
|
Sharma D, Arora A, Oswal P, Bahuguna A, Datta A, Kumar A. Organosulphur and organoselenium compounds as emerging building blocks for catalytic systems for O-arylation of phenols, a C-O coupling reaction. Dalton Trans 2022; 51:8103-8132. [PMID: 35535745 DOI: 10.1039/d1dt04371d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diaryl ethers form an important class of organic compounds. The classic copper-mediated Ullmann diaryl ether synthesis has been known for many years and involves the coupling of phenols with aryl halides. However, the use of high reaction temperature, high catalyst loading and expensive ligands has created a need for the development of alternative catalytic systems. In the recent past, organosulphur and organoselenium compounds have been used as building blocks for developing homogeneous, heterogeneous and nanocatalysts for this C-O coupling reaction. Homogeneous catalytic systems include preformed complexes of metals with organosulphur and organoselenium ligands. The performance of such complexes is influenced dramatically by the nature of the chalcogen (S or Se) donor site of the ligand. Nanocatalytic systems (including Pd17Se15, Pd16S7 and Cu1.8S) have been designed using a single-source precursor route. Heterogeneous catalytic systems contain either metal (Cu or Pd) or metal chalcogenides (Pd17Se15 or Cu1.8S) as catalytically active species. This article aims to cover the simple and straightforward methodologies and approaches that are adopted for developing catalytically relevant organosulfur and organoselenium ligands, their homogeneous metal complexes, heterogeneous and nanocatalysts. The effects of chalcogen (S or Se) donor, halogen (Cl/Br/I) of aryl halide, nature (electron withdrawing or electron donating) of substituents present on the aromatic ring of aryl halides or substituted phenols and position (ortho or para) of substitution on the results of catalytic reactions have been critically analyzed and summarized. The effect of composition (Pd17Se15 or Pd16S7) on the performance of nanocatalytic systems is also highlighted. Substrate scope has also been discussed in all three types of catalysis. The superiority of heterogeneous catalytic systems (e.g., Pd17Se15 immobilised on graphene oxide) indicates the bright future possibilities for the development of efficient catalytic systems using similar or tailored ligands for this reaction.
Collapse
Affiliation(s)
- Deepali Sharma
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences (INMAS), India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| |
Collapse
|
19
|
Synthesis of novel unsymmetrical alkyl-aryl-selenides: β-carbonyl-selenides derivatives and anticancer evaluation. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Complexes of metals with organotellurium compounds and nanosized metal tellurides for catalysis, electrocatalysis and photocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Suzuki−Miyaura coupling and O−arylation reactions catalysed by palladium(II) complexes of bulky ligands bearing naphthalene core, Schiff base functionality and biarylphosphine moiety. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Wang X, Lei J, Guo S, Zhang Y, Ye Y, Tang S, Sun K. Radical selenation of C(sp 3)-H bonds to asymmetric selenides and mechanistic study. Chem Commun (Camb) 2022; 58:1526-1529. [PMID: 35050276 DOI: 10.1039/d1cc06323e] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenides are important structural motifs with a broad range of biological activities and versatile transformational abilities. In this study, a novel and mild method was developed for the facile synthesis of asymmetric selenides under metal-free conditions. The key features of this reaction include good functional-group tolerance, the use of readily available reagents and cheap, low-toxicity solvent, and amenability to gram-scale synthesis. The results of preliminary radical-trapping experiments and a kinetic isotope effect study support a radical process.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| | - Jia Lei
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| | - Sa Guo
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| | - Yong Ye
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| |
Collapse
|
23
|
Oswal P, Arora A, Singh S, Nautiyal D, Kumar S, Kumar A. Functionalization of graphene oxide with a hybrid P, N ligand for immobilizing and stabilizing economical and non-toxic nanosized CuO: an efficient, robust and reusable catalyst for the C–O coupling reaction in O-arylation of phenol. NEW J CHEM 2022. [DOI: 10.1039/d1nj05273j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new graphene oxide based heterogeneous catalytic system holding CuO nanoparticles through P and N donor sites for the C–O coupling reaction.
Collapse
Affiliation(s)
- Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, India
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, India
| | - Siddhant Singh
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, India
| | - Divyanshu Nautiyal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, India
| | - Sushil Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, India
| |
Collapse
|
24
|
Kaushal J, Singh S, Nautiyal D, Rao GK, Singh AK, Kumar A. Click chemistry in the synthesis of catalytically relevant organoselenium compounds: development and applications of catalysts for organic synthesis. NEW J CHEM 2022. [DOI: 10.1039/d2nj02364d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Use of click chemistry in synthesizing organoselenium compounds and the applications of metal complexes of such compounds as catalysts for various chemical transformations have been critically analyzed.
Collapse
Affiliation(s)
- Jolly Kaushal
- Department of Chemistry, School of Physical Sciences (SoPS), Doon University, Dehradun-248012, Uttarakhand, India
| | - Siddhant Singh
- Department of Chemistry, School of Physical Sciences (SoPS), Doon University, Dehradun-248012, Uttarakhand, India
| | - Divyanshu Nautiyal
- Department of Chemistry, School of Physical Sciences (SoPS), Doon University, Dehradun-248012, Uttarakhand, India
| | - Gyandshwar Kumar Rao
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Ajai K. Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences (SoPS), Doon University, Dehradun-248012, Uttarakhand, India
| |
Collapse
|
25
|
Yin Y, Li C, Sun K, Liu Y, Wang X. Radical Aminoselenation of Styrenes: Facile Access to β-Amido-selenides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Yaqoob M, Abbasi M, Anwar H, Iqbal J, Asad M, Asiri AM, Iqbal MA. Dative behavior of N-heterocyclic carbenes (NHCs) with selenium in Se-NHC compounds. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
N-heterocyclic carbenes (NHCs) are an eminent class of carbenes having a heterocyclic ring in which a divalent carbon atom is attached directly to a nitrogen atom. In the NHCs, the donation of lone pair is another important research in the dative bonding and not only in NHCs the dative bond plays a functionalized role in the other classes of complex formation like ylidones L → E ← L and carbones L → C ← L. M–NHC bond is L-M sigma-dative bond and NHCs are considered as strong sigma-donor ligands. The clear picture of the M–NHC bond can be better understood by M–NHC pi-interaction. M-L pi interaction is comprised of two steps. One is L → M sigma-donation and M → L π* back bonding. This dative donor nature of NHC and also its behavior in organoselenium is studied through DFT in which it’s optimized structure, bond lengths, molecular vibrations are calculated.
Collapse
Affiliation(s)
- Munazzah Yaqoob
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad 38040 , Pakistan
| | - Mahvish Abbasi
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad 38040 , Pakistan
| | - Hira Anwar
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad 38040 , Pakistan
| | - Javed Iqbal
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad 38040 , Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad 38040 , Pakistan
- Organometallic & Coordination Chemistry Laboratory , University of Agriculture Faisalabad , Faisalabad 38040 , Pakistan
| |
Collapse
|
27
|
Regioselective C-H arylation of imidazoles employing macrocyclic palladium(II) complex of organoselenium ligand. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Oswal P, Arora A, Gairola S, Datta A, Kumar A. Organosulfur, organoselenium, and organotellurium ligands in the development of palladium, nickel, and copper-based catalytic systems for Heck coupling. NEW J CHEM 2021. [DOI: 10.1039/d1nj02971a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organosulfur, organoselenium, and organotellurium ligands in designing Pd, Ni, and Cu-based homogeneous, heterogeneous, and nanocatalytic systems for Heck coupling.
Collapse
Affiliation(s)
- Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248012, India
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248012, India
| | - Sakshi Gairola
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248012, India
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248012, India
| |
Collapse
|