1
|
Kaushik K, Mehta S, Das M, Ghosh S, Kamilya S, Mondal A. Stimuli-responsive magnetic materials: impact of spin and electronic modulation. Chem Commun (Camb) 2023; 59:13107-13124. [PMID: 37846652 DOI: 10.1039/d3cc04268e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Addressing molecular bistability as a function of external stimuli, especially in spin-crossover (SCO) and metal-to-metal electron transfer (MMET) systems, has seen a surge of interest in the field of molecule-based magnetic materials due to their enormous potential in various technological applications such as molecular spintronics, memory and electronic devices, switches, sensors, and many more. The fine-tuning of molecular components allow the design and synthesis of materials with tailored properties for these vast applications. In this Feature Article, we discuss a part of our research work into this broad topic, pertaining to the recent discoveries in the field of switchable molecular magnetic materials based on SCO and MMET systems, along with some historical background of the area and related accomplishments made in recent years.
Collapse
Affiliation(s)
- Krishna Kaushik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Mayurika Das
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sounak Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
2
|
Bagchi S, Kamilya S, Mehta S, Mandal S, Bandyopadhyay A, Narayan A, Ghosh S, Mondal A. Spin-state switching: chemical modulation and the impact of intermolecular interactions in manganese(III) complexes. Dalton Trans 2023; 52:11335-11348. [PMID: 37530419 DOI: 10.1039/d3dt01707a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A series of mononuclear manganese(III) complexes [Mn(X-sal2-323)](ReO4) (X = 5 Cl, 1; X = 5 Br, 2; X = 3,5 Cl, 3; X = 3,5 Br, 4; and X = 5 NO2, 5), containing hexadentate ligands prepared using the condensation of N,N'-bis(3-aminopropyl)ethylenediamine and 5- or 3,5-substituted salicylaldehyde, has been synthesized. Variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, electrochemical, and spectroelectrochemical analyses, and theoretical calculations have been used to explore the role of various ligand substituents in the spin-state switching behavior of the prepared manganese(III) complexes. All five complexes consist of an analogous distorted octahedral monocationic MnN4O2 surrounding offered by the flexible hexadentate ligand and ReO4- as the counter anion. However, a disordered water molecule was detected in complex 4. Complexes 1 (X = 5 Cl) and 5 (X = 5 NO2) show gradual and complete spin-state switching between the high-spin (HS) (S = 2) and the low-spin (LS) (S = 1) state with T1/2 values of 146 and 115 K respectively, while an abrupt and complete transition at 95 K was observed for complex 2 (X = 5 Br). Alternatively, complex 3 (X = 3, 5 Cl) exhibits an incomplete and sharp transition between the HS and LS states at 104 K, while complex 4 (X = 3, 5 Br) (desolvated) remains almost LS up to 300 K and then displays gradual and incomplete SCO at a higher temperature. The nature of the spin-state switch and transition temperature suggest that the structural effect (cooperativity) plays a more significant role in comparison with the electronic effect coming from various substituents (Cl, Br, and NO2), which is further supported by the detailed structural, electrochemical, and theoretical studies.
Collapse
Affiliation(s)
- Sukanya Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Subhankar Mandal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Arka Bandyopadhyay
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Awadhesh Narayan
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
3
|
Harris M, Kühne IA, Kelly CT, Jakobsen VB, Jordan R, O’Brien L, Müller-Bunz H, Felton S, Morgan GG. Compressed and Expanded Lattices - Barriers to Spin-State Switching in Mn 3+ Complexes. CRYSTAL GROWTH & DESIGN 2023; 23:3996-4012. [PMID: 37304401 PMCID: PMC10251414 DOI: 10.1021/acs.cgd.2c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/08/2023] [Indexed: 06/13/2023]
Abstract
We report the structural and magnetic properties of two new Mn3+ complex cations in the spin crossover (SCO) [Mn(R-sal2323)]+ series, in lattices with seven different counterions in each case. We investigate the effect on the Mn3+ spin state of appending electron-withdrawing and electron-donating groups on the phenolate donors of the ligand. This was achieved by substitution of the ortho and para positions on the phenolate donors with nitro and methoxy substituents in both possible geometric isomeric forms. Using this design paradigm, the [MnL1]+ (a) and [MnL2]+ (b) complex cations were prepared by complexation of Mn3+ to the hexadentate Schiff base ligands with 3-nitro-5-methoxy-phenolate or 3-methoxy-5-nitro-phenolate substituents, respectively. A clear trend emerges with adoption of the spin triplet form in complexes 1a-7a, with the 3-nitro-5-methoxy-phenolate donors, and spin triplet, spin quintet and thermal SCO in complexes 1b-7b with the 3-methoxy-5-nitro-phenolate ligand isomer. The outcomes are discussed in terms of geometric and steric factors in the 14 new compounds and by a wider analysis of electronic choices of Mn3+ with related ligands by comparison of bond length and angular distortion data of previously reported analogues in the [Mn(R-sal2323)]+ family. The structural and magnetic data published to date suggest a barrier to switching may exist for high spin forms of Mn3+ in those complexes with the longest bond lengths and highest distortion parameters. A barrier to switching from low spin to high spin is less clear but may operate in the seven [Mn(3-NO2-5-OMe-sal2323)]+ complexes 1a-7a reported here which were all low spin in the solid state at room temperature.
Collapse
Affiliation(s)
- Michelle
M. Harris
- School
of Chemistry, University College Dublin, Belfield, Dublin, D04
V1W8, Ireland
| | - Irina A. Kühne
- School
of Chemistry, University College Dublin, Belfield, Dublin, D04
V1W8, Ireland
- Department
of Functional Materials, FZU - Institute
of Physics - Czech Academy of Sciences, Na Slovance 1999/2, Prague
8, 182 21, Czech Republic
| | - Conor T. Kelly
- School
of Chemistry, University College Dublin, Belfield, Dublin, D04
V1W8, Ireland
| | - Vibe B. Jakobsen
- School
of Chemistry, University College Dublin, Belfield, Dublin, D04
V1W8, Ireland
| | - Ross Jordan
- Centre
for Quantum Materials and Technologies, School of Mathematics and
Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Luke O’Brien
- School
of Chemistry, University College Dublin, Belfield, Dublin, D04
V1W8, Ireland
| | - Helge Müller-Bunz
- School
of Chemistry, University College Dublin, Belfield, Dublin, D04
V1W8, Ireland
| | - Solveig Felton
- Centre
for Quantum Materials and Technologies, School of Mathematics and
Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Grace G. Morgan
- School
of Chemistry, University College Dublin, Belfield, Dublin, D04
V1W8, Ireland
| |
Collapse
|
4
|
Ghosh S, Ghosh S, Kamilya S, Mandal S, Mehta S, Mondal A. Impact of Counteranion on Reversible Spin-State Switching in a Series of Cobalt(II) Complexes Containing a Redox-Active Ethylenedioxythiophene-Based Terpyridine Ligand. Inorg Chem 2022; 61:17080-17088. [PMID: 36264687 DOI: 10.1021/acs.inorgchem.2c02313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The self-assembly of a redox-active ethylenedioxythiophene (EDOT)-terpyridine-based tridentate ligand and cobalt(II) unit with different counteranions has led to a series of new cobalt(II) complexes [Co(L)2](X)2 (X = BF4 (1), ClO4 (2), and BPh4 (3)) (L = 4'-(3,4-ethylenedioxythiophene)-2,2':6',2″-terpyridine). The impact of various counteranions on stabilization and spin-state switching of the cobalt(II) center was explored through detailed magneto-structural investigation using variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, electrochemical, and spectroelectrochemical studies. All three complexes 1-3 consisted of an isostructural dicationic distorted octahedral CoN6 coordination environment offered by the two L ligands in a bis-meridional fashion and BF4-, ClO4-, and BPh4- as a counteranion, respectively. Complex 2 with ClO4- counteranion showed a reversible, gradual, and nearly complete spin-state switching between low-spin (LS) (S = 1/2) and high-spin (HS) (S = 3/2) states, while an incomplete spin-state switching behavior was observed for complexes 1 (BF4-) and 3 (BPh4-) in the measured temperature range of 350-2 K. The non-covalent cation-anion interactions played a significant role in stabilizing the spin-state in 1-3. Additionally, complexes 1-3 also exhibited interesting redox-stimuli-based reversible paramagnetic HS cobalt(II) (S = 3/2) to diamagnetic LS cobalt(III) (S = 0) conversion, offering an alternate way to switch the magnetic properties.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Sounak Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Subhankar Mandal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| |
Collapse
|
5
|
Ghosh S, Kamilya S, Mehta S, Herchel R, Kiskin M, Veber S, Fedin M, Mondal A. Effect of Ligand Chain Length for Tuning of Molecular Dimensionality and Magnetic Relaxation in Redox Active Cobalt(II) EDOT Complexes (EDOT = 3,4-Ethylenedioxythiophene). Chem Asian J 2022; 17:e202200404. [PMID: 35617522 DOI: 10.1002/asia.202200404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Four cobalt(II) complexes, [Co(L1)2(NCX)2(MeOH)2] (X = S (1), Se (2)) and {[Co(L2)2(NCX)2]}n (X = S (3), Se (4)) (L1 = 2,5dipyridyl-3,4,-ethylenedioxylthiophene and L2 = 2,5diethynylpyridinyl-3,4-ethylenedioxythiophene), were synthesized by incorporating ethylenedioxythiophene based redox-active luminescence ligands. All these complexes have been well characterized using single-crystal X-ray diffraction analyses, spectroscopic and magnetic investigations. Magneto-structural studies showed that 1 and 2 adopt a mononuclear structure with CoN4O2 octahedral coordination geometry while 3 and 4 have a 2D [4 x 4] rhombic grid coordination networks (CNs) where each cobalt(II) center is in a CoN6 octahedral coordination environment. Static magnetic measurements reveal that all four complexes displayed a high spin (HS) (S = 3/2) state between 2 and 280 K which was further confirmed by X-band and Q-band EPR studies. Remarkably, along with the molecular dimensionality (0D and 2D) the modification in the axial coligands lead to a significant difference in the dynamic magnetic properties of the monomers and CNs at low temperatures. All complexes display slow magnetic relaxation behavior under an external dc magnetic field. For the complexes with NCS- as coligand observed higher energy barrier for spin reversal in comparison to the complexes with NCSe- as coligand, while mononuclear complex 1 exhibited a higher energy barrier than that of CN 3. Theoretical calculations at the DFT and CASSCF level of theory have been performed to get more insight into the electronic structure and magnetic properties of all four complexes.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46, Olomouc, Czech Republic
| | - Mikhail Kiskin
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991, Moscow, Russia
| | - Sergey Veber
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3a, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 1, 630090, Novosibirsk, Russia
| | - Matvey Fedin
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3a, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 1, 630090, Novosibirsk, Russia
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| |
Collapse
|
6
|
Ghosh S, Bagchi S, Kamilya S, Mehta S, Sarkar D, Herchel R, Mondal A. Impact of counter anions on spin-state switching of manganese(III) complexes containing an azobenzene ligand. Dalton Trans 2022; 51:7681-7694. [PMID: 35521740 DOI: 10.1039/d2dt00660j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four mononuclear manganese(III) complexes coordinated with photo-active hexadentate azobenzene ligands, [Mn(5azo-sal2-323)](X) (X = Cl, 1; X = BF4, 2; X = ClO4, 3; X = PF6, 4), were prepared. The impact of various counter anions on the stabilization and switching of the spin state of the manganese(III) center was explored through detailed magneto-structural investigation using variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, and spectroelectrochemical studies, along with theoretical calculations. All four complexes consisted of an isostructural monocationic distorted octahedral MnN4O2 coordination environment offered by the hexadentate ligand and Cl-, BF4-, ClO4-, and PF6- as counter anions respectively. Complex 1 with a spherical Cl- counter anion showed a reversible and gradual spin-state switching between low-spin (LS) (S = 1) and high-spin (HS) (S = 2) states above 400 K, where non-covalent cation-anion interactions played a significant role in stabilizing the LS state. While, irrespective of the shape of the counter anion, complexes 2-4 remained in the HS state throughout the measured temperature range of 300-2 K, where strong π-π interaction between the azobenzene motifs among cationic units played a substantial role in stabilizing the HS state. Furthermore, magnetic data analyses revealed significantly large zero-field splitting in the S = 1 state for 1 (D = 19.4 cm-1, E/D = 0.008) in comparison with that in the S = 2 state for 2-4 (D = 3.99-4.97 cm-1, E/D = 0.002-0.195). Spectroelectrochemical investigations revealed the quasi-reversible reduction and oxidation of the manganese(III) center to manganese(II) and manganese(IV), respectively. A detailed theoretical calculation at the DFT and CASSCF level of theory was carried out to better understand the magneto-structural correlation.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sukanya Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Debopam Sarkar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46 Olomouc, Czech Republic
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
7
|
Wang YT, Xu PY, Yu ZM, Wang ZK, Wu HY, Wang S, Li YH. Solid-state lattice effects on high-spin Mn(III) complexes with hexadentate Schiff-base ligand. Supramol Chem 2022. [DOI: 10.1080/10610278.2021.2025240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yu-Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Peng-Yu Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Zong-Mei Yu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Zi-Kun Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Hua-Yu Wu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Shi Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Yong-Hua Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| |
Collapse
|
8
|
Dobbelaar E, Jakobsen VB, Trzop E, Lee M, Chikara S, Ding X, Müller‐Bunz H, Esien K, Felton S, Carpenter MA, Collet E, Morgan GG, Zapf VS. Thermal and Magnetic Field Switching in a Two‐Step Hysteretic Mn
III
Spin Crossover Compound Coupled to Symmetry Breakings. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Emiel Dobbelaar
- School of Chemistry University College Dublin Science Centre Belfield Dublin 4 Ireland
- Current address: Technische Universität Kaiserslautern Fachbereich Chemie Erwin-Schrödinger-Strasse 52–54 67655 Kaiserslautern Germany
| | - Vibe B. Jakobsen
- School of Chemistry University College Dublin Science Centre Belfield Dublin 4 Ireland
- Current address: Nature Energy Ørbækvej 260 5220 Odense SØ Denmark
| | - Elzbieta Trzop
- Univ Rennes CNRS, IPR (Institut de Physique de Rennes), UMR 6251 35000 Rennes France
| | - Minseong Lee
- National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Shalinee Chikara
- National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos NM 87545 USA
- Current address: National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Xiaxin Ding
- National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos NM 87545 USA
- Current address: City College of New York New York NY 10010 USA
| | - Helge Müller‐Bunz
- School of Chemistry University College Dublin Science Centre Belfield Dublin 4 Ireland
| | - Kane Esien
- Centre for Nanostructured Media School of Mathematics and Physics Queen's University of Belfast Belfast BT7 1NN, Northern Ireland UK
- Current address: Cardiff University Cardiff CF10 3AT Wales UK
| | - Solveig Felton
- Centre for Nanostructured Media School of Mathematics and Physics Queen's University of Belfast Belfast BT7 1NN, Northern Ireland UK
| | - Michael A. Carpenter
- Department of Earth Sciences University of Cambridge Downing Street Cambridge CB2 3EQ UK
| | - Eric Collet
- Univ Rennes CNRS, IPR (Institut de Physique de Rennes), UMR 6251 35000 Rennes France
| | - Grace G. Morgan
- School of Chemistry University College Dublin Science Centre Belfield Dublin 4 Ireland
| | - Vivien S. Zapf
- National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos NM 87545 USA
| |
Collapse
|
9
|
Tiunova AV, Kazakova AV, Korchagin DV, Shilov GV, Zakharov KV, Vasiliev AN, Yagubskii EB. The effect of fluorine substituents on the crystal structure and spin crossover behavior of the cation [Mn III(3,5-diHal-sal 2323)] + complex family with BPh 4 anions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02872g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of fluorine substituents on the structure and magnetic behavior of [Mn(R′,R′′-sal2323)]BPh4 complexes was studied and compared it with that of chlorine and bromine substituents.
Collapse
Affiliation(s)
- A. V. Tiunova
- Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, MD, Russia
| | - A. V. Kazakova
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, MD, Russia
| | - D. V. Korchagin
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, MD, Russia
| | - G. V. Shilov
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, MD, Russia
| | - K. V. Zakharov
- Lomonosov Moscow State University, 119991 Moscow, Russia
| | - A. N. Vasiliev
- Lomonosov Moscow State University, 119991 Moscow, Russia
- National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - E. B. Yagubskii
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, MD, Russia
| |
Collapse
|
10
|
Zorina-Tikhonova EN, Matyukhina AK, Chistyakov AS, Vologzhanina AV, Korlyukov AA, Gogoleva NV, Novikova VA, Belova EV, Ugolkova EA, Starikova AA, Korchagin DV, Babeshkin KA, Efimov NN, Kiskin MA, Eremenko IL. Synthesis, structure, magnetic properties and thermal behaviour of Ba–M II (M II = Mn, Co, Cu, and Zn) allylmalonates. NEW J CHEM 2022. [DOI: 10.1039/d2nj03751c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of Ba-MII complexes with allylmalonic acid anions [BaMII(Amal)2(H2O)3]n (MII = Mn, Co, Cu, and Zn) were synthesized. The magnetic measurements revealed slow magnetic relaxation in non-zero field (HDC = 1500 Oe) for CoII ions.
Collapse
Affiliation(s)
- Ekaterina N. Zorina-Tikhonova
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Anna K. Matyukhina
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Aleksandr S. Chistyakov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Anna V. Vologzhanina
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova str. 28, 119334 Moscow, Russian Federation
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova str. 28, 119334 Moscow, Russian Federation
| | - Natalia V. Gogoleva
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Veronika A. Novikova
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
- Chemistry Department, Lomonosov Moscow State University, Leninsky gory, 1-3, 1119991 Moscow, Russian Federation
| | - Ekaterina V. Belova
- Chemistry Department, Lomonosov Moscow State University, Leninsky gory, 1-3, 1119991 Moscow, Russian Federation
| | - Elena A. Ugolkova
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Alyona A. Starikova
- Institute of Physical and Organic Chemistry, Southern Federal University, prosp. Stachki 194/2, Rostov-on-Don 344090, Russian Federation
| | - Denis V. Korchagin
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Ac. Semenov prosp. 1, Chernogolovka, Moscow region 142432, Russian Federation
| | - Konstantin A. Babeshkin
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Nikolay N. Efimov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Mikhail A. Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
| | - Igor L. Eremenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russian Federation
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova str. 28, 119334 Moscow, Russian Federation
| |
Collapse
|
11
|
Dobbelaar E, Jakobsen VB, Trzop E, Lee M, Chikara S, Ding X, Müller-Bunz H, Esien K, Felton S, Carpenter MA, Collet E, Morgan GG, Zapf VS. Thermal and Magnetic Field Switching in a Two-Step Hysteretic Mn III Spin Crossover Compound Coupled to Symmetry Breakings. Angew Chem Int Ed Engl 2021; 61:e202114021. [PMID: 34761504 DOI: 10.1002/anie.202114021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 11/10/2022]
Abstract
A MnIII spin crossover complex with atypical two-step hysteretic thermal switching at 74 K and 84 K shows rich structural-magnetic interplay and magnetic-field-induced spin state switching below 14 T with an onset below 5 T. The spin states, structures, and the nature of the phase transitions are elucidated via X-ray and magnetization measurements. An unusual intermediate phase containing four individual sites, where 1 / 4 are in a pure low spin state, is observed. The splitting of equivalent sites in the high temperature phase into four inequivalent sites is due to a structural reorganization involving a primary and a secondary symmetry-breaking order parameter that induces a crystal system change from orthorhombic→monoclinic and a cell doubling. Further cooling leads to a reconstructive phase transition and a monoclinic low-temperature phase with two inequivalent low-spin sites. The coupling between the order parameters is identified in the framework of Landau theory.
Collapse
Affiliation(s)
- Emiel Dobbelaar
- School of Chemistry, University College Dublin, Science Centre Belfield, Dublin, 4, Ireland.,Current address: Technische Universität Kaiserslautern, Fachbereich Chemie, Erwin-Schrödinger-Strasse 52-54, 67655, Kaiserslautern, Germany
| | - Vibe B Jakobsen
- School of Chemistry, University College Dublin, Science Centre Belfield, Dublin, 4, Ireland.,Current address: Nature Energy, Ørbaekvej 260, 5220, Odense SØ, Denmark
| | - Elzbieta Trzop
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, 35000, Rennes, France
| | - Minseong Lee
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Shalinee Chikara
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Current address: National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Xiaxin Ding
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Current address: City College of New York, New York, NY, 10010, USA
| | - Helge Müller-Bunz
- School of Chemistry, University College Dublin, Science Centre Belfield, Dublin, 4, Ireland
| | - Kane Esien
- Centre for Nanostructured Media, School of Mathematics and Physics, Queen's University of Belfast, Belfast, BT7 1NN, Northern Ireland, UK.,Current address: Cardiff University, Cardiff, CF10 3AT, Wales, UK
| | - Solveig Felton
- Centre for Nanostructured Media, School of Mathematics and Physics, Queen's University of Belfast, Belfast, BT7 1NN, Northern Ireland, UK
| | - Michael A Carpenter
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, 35000, Rennes, France
| | - Grace G Morgan
- School of Chemistry, University College Dublin, Science Centre Belfield, Dublin, 4, Ireland
| | - Vivien S Zapf
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
12
|
Drosou M, Mitsopoulou CA, Pantazis DA. Spin-state energetics of manganese spin crossover complexes: Comparison of single-reference and multi-reference ab initio approaches. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Tiunova AV, Kazakova AV, Korchagin DV, Shilov GV, Zorina LV, Simonov SV, Zakharov KV, Vasiliev AN, Yagubskii EB. Abrupt Spin-State Switching in Mn(III) Complexes with BPh 4 Anion: Effect of Halide Substituents on Crystal Structure and Magnetic Properties. Chemistry 2021; 27:17609-17619. [PMID: 34618383 DOI: 10.1002/chem.202102666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 11/07/2022]
Abstract
Three tetraphenylborates of mononuclear Mn(III) cation complexes with hexadentate ligands, the products of the reaction between a N,N'-bis(3-aminopropyl)ethylenediamine and salicylaldehydes with the different haloid substitutions at the 5 or 3,5 positions, have been synthesized: [Mn(5-F-sal-N-1,5,8,12)]BPh4 (1), [Mn(3,5-diCl-sal-N-1,5,8,12)]BPh4 (2) and [Mn(3,5-Br,Cl-sal-N-1,5,8,12)]BPh4 (3). Their crystal structure, dielectric constant (ϵ) and magnetic properties have been studied. Ligand substituents have a dramatic effect on the structure and magnetic properties of the complexes. With decreasing temperature, the complex (1) shows a gradual spin crossover from the high-spin state (HS) to the HS:LS intermediate phase, followed by an abrupt transition to the low-spin state (LS) without changing the crystal symmetry. The complexes 2 and 3 are isostructural, but have fundamentally different properties. Complex 2 demonstrates two structural phase transitions related to sharp spin crossovers from the HS to the HS:LS intermediate phase at 137 K and from the intermediate phase to the LS at 87 K, while complex 3 exhibits only one spin transition from the HS to the HS:LS intermediate phase at 83 K.
Collapse
Affiliation(s)
- Aleksandra V Tiunova
- Lomonosov Moscow State University, 119991, Moscow, Russia.,Institute of Problems of Chemical Physics, RAS, 142432, Chernogolovka, MD, Russia
| | - Anna V Kazakova
- Institute of Problems of Chemical Physics, RAS, 142432, Chernogolovka, MD, Russia
| | - Denis V Korchagin
- Institute of Problems of Chemical Physics, RAS, 142432, Chernogolovka, MD, Russia
| | - Gennady V Shilov
- Institute of Problems of Chemical Physics, RAS, 142432, Chernogolovka, MD, Russia
| | - Leokadiya V Zorina
- Institute of Solid State Physics, RAS, 142432, Chernogolovka, MD, Russia
| | - Sergey V Simonov
- Institute of Solid State Physics, RAS, 142432, Chernogolovka, MD, Russia
| | | | - Aleksander N Vasiliev
- Lomonosov Moscow State University, 119991, Moscow, Russia.,National University of Science and Technology "MISiS", 119049, Moscow, Russia
| | - Eduard B Yagubskii
- Institute of Problems of Chemical Physics, RAS, 142432, Chernogolovka, MD, Russia
| |
Collapse
|
14
|
Kaushik K, Ghosh S, Kamilya S, Rouzières M, Mehta S, Mondal A. Reversible Photo- and Thermo-Induced Spin-State Switching in a Heterometallic { 5d-3d} W 2Fe 2 Molecular Square Complex. Inorg Chem 2021; 60:7545-7552. [PMID: 33929177 DOI: 10.1021/acs.inorgchem.1c01014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following the complex-as-a-ligand strategy, self-assembly of [W(CN)8]3- and iron(II) with bidentate nitrogen donor ligand bik (bik = bis(1-methyl-1H-imidazol-2-yl)ketone) ligand affords a cyanide-bridged [W2Fe2] molecular square complex [HNBu3]2{[W(CN)8]2[Fe(bik)2]2}·6H2O·CH3OH (1). The complex was characterized by single-crystal X-ray diffraction analyses, (photo)magnetic studies, optical reflectivity, electrochemical studies, and spectroscopic studies. Structural analyses revealed that in the [W2Fe2] square motif tungsten(V) and iron(II) centers reside in an alternate corner of the square and are bridged by the cyanide ligands. Complex 1 exhibits thermo-induced spin crossover (SCO) between {WV (S = 1/2) - FeIILS (S = 0)} and {WV (S = 1/2) - FeIIHS (S = 2)} pairs near room temperature and photoinduced spin-state switching with TLIESST = 70 K under light irradiation at low temperature. To the best of our knowledge, 1 represents the first complex containing iron(II) and [WV(CN)8]3- units exhibiting both SCO and photomagnetic effect.
Collapse
Affiliation(s)
- Krishna Kaushik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| |
Collapse
|