1
|
Ruggieri S, Mizzoni S, Cavalli E, Sissa C, Anselmi M, Gualandi A, Cozzi PG, Carneiro Neto AN, Melchior A, Zinna F, Willis OG, Di Bari L, Piccinelli F. Influence of Hydroxycoumarin Substituents on the Photophysical Properties of Chiroptical Tb(III) and Eu(III) Complexes. Inorg Chem 2024; 63:23188-23201. [PMID: 39589457 DOI: 10.1021/acs.inorgchem.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
In this article, the synthesis, density functional theory (DFT) structural characterization, and spectroscopic investigation of chiral and heteroleptic Tb(III) and Eu(III) complexes are presented. These molecules are characterized by two different ligands: the enantiopure N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N'-diacetic acid (H2bpcd) and a hydroxycoumarin-based ligand bearing different substituents in C(3) position (i.e., acetyl group in Coum, ethyl ester in CoumA, secondary and tertiary amides in CoumB and CoumC, respectively). The coumarin ligands exhibited different luminescence sensitization efficiency toward Tb(III) and Eu(III) ions in the related complexes of chemical formula [Ln(bpcd)(Coum)], [Ln(bpcd)(CoumA)], [Ln(bpcd)(CoumB)], [Ln(bpcd)(CoumC)]. Through theoretical calculations of intramolecular energy transfer (IET) processes (ligand-to-metal) in Eu(III) and Tb(III) complexes, along with quantum yield calculations, we provide a reasonable explanation for the observed differences in their luminescence properties. The nature of the coumarin ligand also affects the chiroptical properties of the Tb(III) complexes [i.e., circularly polarized luminescence (CPL) and electronic circular dichroism (ECD)].
Collapse
Affiliation(s)
- Silvia Ruggieri
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Silvia Mizzoni
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Enrico Cavalli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 17/a, Parma 43124, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 17/a, Parma 43124, Italy
| | - Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, via Gobetti 85, Bologna 40129, Italy
| | - Andrea Gualandi
- Department of Chemistry "G. Ciamician", University of Bologna, via Gobetti 85, Bologna 40129, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - University of Bologna, via Gobetti 85, Bologna 40129, Italy
| | - Pier Giorgio Cozzi
- Department of Chemistry "G. Ciamician", University of Bologna, via Gobetti 85, Bologna 40129, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - University of Bologna, via Gobetti 85, Bologna 40129, Italy
| | - Albano N Carneiro Neto
- Physics Department and CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Andrea Melchior
- Polytechnic Department of Engineering, Laboratory of Chemical Technologies, University of Udine, via Cotonificio 108, Udine 33100, Italy
| | - Francesco Zinna
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, Pisa 56124, Italy
| | - Oliver G Willis
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, Pisa 56124, Italy
| | - Lorenzo Di Bari
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, Pisa 56124, Italy
| | - Fabio Piccinelli
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, Verona 37134, Italy
| |
Collapse
|
2
|
Yang LZ, Yang RX, Zhu PY, Yue TC, Yu YM, Wang DZ, Wang LL. Magnetic, fluorescence and electric properties of rare earth complexes based on reduced Schiff base carboxylic acid ligand. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
3
|
Chen L, Xiong W, Ma Y, Ge JY, Lv N, Wu X, Chen J, Chen Z. Synthesis of 1-Aminoisoquinolines and Their Application in a Host-Guest Doped Strategy To Construct Ultralong Room-Temperature Phosphorescence Materials for Bioimaging. Chemistry 2023; 29:e202202909. [PMID: 36326711 DOI: 10.1002/chem.202202909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Indexed: 11/06/2022]
Abstract
Organic ultralong room-temperature phosphorescence (RTP) materials have attracted great attention for their wide applications in optoelectronic devices and bioimaging. However, the development of these materials remains a challenging task, partially due to the lack of rational molecular design strategies and unclear luminescence mechanisms. Herein, we present a method for facile access to structurally diverse substituted 1-aminoisoquinoline derivatives through a copper-catalyzed one-pot three-component coupling reaction that provides a promising approach to rapidly assemble a library of 1-aminoisoquinolines for exploring the regularity of the host-guest doped system. A series of host-guest RTP materials with wide-ranging lifetimes from 4.4 to 299.3 ms were constructed by doping various substituted isoquinolines derivatives into benzophenone (BP). Furthermore, 4 r/BP nanoparticles could be used for in-vivo imaging with a signal-to-noise ratio value as high as 32, revealing the potential of the isoquinoline framework for the construction of high-performance RTP materials.
Collapse
Affiliation(s)
- Lepeng Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Wenzhang Xiong
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Yaogeng Ma
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Ningning Lv
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xuan Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325035, P. R. China
| | - Jiuxi Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Zhongyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| |
Collapse
|
4
|
Carneiro Neto AN, Moura RT, Carlos LD, Malta OL, Sanadar M, Melchior A, Kraka E, Ruggieri S, Bettinelli M, Piccinelli F. Dynamics of the Energy Transfer Process in Eu(III) Complexes Containing Polydentate Ligands Based on Pyridine, Quinoline, and Isoquinoline as Chromophoric Antennae. Inorg Chem 2022; 61:16333-16346. [PMID: 36201622 PMCID: PMC9580001 DOI: 10.1021/acs.inorgchem.2c02330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In this work, we investigated from a theoretical point
of view
the dynamics of the energy transfer process from the ligand to Eu(III)
ion for 12 isomeric species originating from six different complexes
differing by nature of the ligand and the total charge. The cationic
complexes present the general formula [Eu(L)(H2O)2]+ (where L = bpcd2– = N,N′-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate;
bQcd2– = N,N′-bis(2-quinolinmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate; and bisoQcd2– = N,N′-bis(2-isoquinolinmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate), while the neutral complexes present
the Eu(L)(H2O)2 formula (where L = PyC3A3– = N-picolyl-N,N′,N′-trans-1,2-cyclohexylenediaminetriacetate; QC3A3– = N-quinolyl-N,N′,N′-trans-1,2-cyclohexylenediaminetriacetate;
and isoQC3A3– = N-isoquinolyl-N,N′,N′-trans-1,2-cyclohexylenediaminetriacetate).
Time-dependent density functional theory (TD-DFT) calculations provided
the energy of the ligand excited donor states, distances between donor
and acceptor orbitals involved in the energy transfer mechanism (RL), spin-orbit coupling matrix elements, and
excited-state reorganization energies. The intramolecular energy transfer
(IET) rates for both singlet-triplet intersystem crossing and ligand-to-metal
(and vice versa) involving a multitude of ligand and Eu(III) levels
and the theoretical overall quantum yields (ϕovl)
were calculated (the latter for the first time without the introduction
of experimental parameters). This was achieved using a blend of DFT,
Judd–Ofelt theory, IET theory, and rate equation modeling.
Thanks to this study, for each isomeric species, the most efficient
IET process feeding the Eu(III) excited state, its related physical
mechanism (exchange interaction), and the reasons for a better or
worse overall energy transfer efficiency (ηsens)
in the different complexes were determined. The spectroscopically
measured ϕovl values are in good agreement with the
ones obtained theoretically in this work. Photophysical properties of 12 Eu(III)
complexes with pyridine,
quinoline, and isoquinoline ligands in aqueous solutions were elucidated
and predicted through a theoretical protocol using a blend of DFT,
Judd−Ofelt theory, intramolecular energy transfer theory, and
coupled rate equation modeling calculations. The theoretical procedure
is general and can be extended to any lanthanide-based complexes.
Collapse
Affiliation(s)
- Albano N Carneiro Neto
- Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193Aveiro, Portugal
| | - Renaldo T Moura
- Department of Chemistry and Physics, Federal University of Paraíba, 58397-000Areia, Brazil.,Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Luís D Carlos
- Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193Aveiro, Portugal
| | - Oscar L Malta
- Department of Fundamental Chemistry, Federal University of Pernambuco, 50740-560Recife, Brazil
| | - Martina Sanadar
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, University of Udine, 33100Udine, Italy
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, University of Udine, 33100Udine, Italy
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Silvia Ruggieri
- Luminescent Materials Laboratory, Department of Biotechnology, University of Verona and INSTM, UdR Verona, 37134Verona, Italy
| | - Marco Bettinelli
- Luminescent Materials Laboratory, Department of Biotechnology, University of Verona and INSTM, UdR Verona, 37134Verona, Italy
| | - Fabio Piccinelli
- Luminescent Materials Laboratory, Department of Biotechnology, University of Verona and INSTM, UdR Verona, 37134Verona, Italy
| |
Collapse
|
5
|
Recognition and discrimination of citric acid isomers by luminescent nanointerface self‐assembled from amphiphilic Eu(III) complexes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Piccinelli F, Nardon C, Bettinelli M, Melchior A, Tolazzi M, Zinna F, Di Bari L. Lanthanide‐Based Complexes Containing a Chiral
trans
‐1,2‐Diaminocyclohexane (DACH) Backbone: Spectroscopic Properties and Potential Applications. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Fabio Piccinelli
- Luminescent Materials Laboratory DB, University of Verona, and INSTM, UdR Verona Strada Le Grazie 15 37134 Verona Italy
| | - Chiara Nardon
- Luminescent Materials Laboratory DB, University of Verona, and INSTM, UdR Verona Strada Le Grazie 15 37134 Verona Italy
| | - Marco Bettinelli
- Luminescent Materials Laboratory DB, University of Verona, and INSTM, UdR Verona Strada Le Grazie 15 37134 Verona Italy
| | - Andrea Melchior
- Dipartimento Politecnico di ingegneria e architettura Laboratorio di Tecnologie Chimiche University of Udine Via Cotonificio 108 33100 Udine Italy
| | - Marilena Tolazzi
- Dipartimento Politecnico di ingegneria e architettura Laboratorio di Tecnologie Chimiche University of Udine Via Cotonificio 108 33100 Udine Italy
| | - Francesco Zinna
- Department of Chemistry and Industrial Chemistry Via Moruzzi 13 56124 Pisa Italy
| | - Lorenzo Di Bari
- Department of Chemistry and Industrial Chemistry Via Moruzzi 13 56124 Pisa Italy
| |
Collapse
|