Wang M, Han Z, Garcia Y, Cheng P. Six-Coordinated Co
II Single-Molecule Magnets: Synthetic Strategy, Structure and Magnetic Properties.
Chemphyschem 2024;
25:e202400396. [PMID:
38889310 DOI:
10.1002/cphc.202400396]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The pursuit of molecule-based magnetic memory materials contributes significantly to high-density information storage research in the frame of the ongoing information technologies revolution. Remarkable progress has been achieved in both transition metal (TM) and lanthanide based single-molecule magnets (SMMs). Notably, six-coordinated CoII SMMs hold particular research significance owing to the economic and abundant nature of 3d TM ions compared to lanthanide ions, the substantial spin-orbit coupling of CoII ions, the potential for precise control over coordination geometry, and the air-stability of coordination-saturated structures. In this review, we will summarize the progress made in six-coordinated CoII SMMs, organized by their coordination geometry and molecular structure similarity. Valuable insights, principles, and new mechanism gleaned from this research and remaining issues that need to be addressed will also be discussed to guide future optimization.
Collapse