1
|
Lelouche SNK, Albentosa-González L, Clemente-Casares P, Biglione C, Rodríguez-Diéguez A, Tolosa Barrilero J, García-Martínez JC, Horcajada P. Antibacterial Cu or Zn-MOFs Based on the 1,3,5-Tris-(styryl)benzene Tricarboxylate. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2294. [PMID: 37630879 PMCID: PMC10458854 DOI: 10.3390/nano13162294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Metal-organic frameworks (MOFs) are highly versatile materials. Here, two novel MOFs, branded as IEF-23 and IEF-24 and based on an antibacterial tricarboxylate linker and zinc or copper cations, and holding antibacterial properties, are presented. The materials were synthesized by the solvothermal route and fully characterized. The antibacterial activity of IEF-23 and IEF-24 was investigated against Staphylococcus epidermidis and Escherichia coli via the agar diffusion method. These bacteria are some of the most broadly propagated pathogens and are more prone to the development of antibacterial resistance. As such, they represent an archetype to evaluate the efficiency of novel antibacterial treatments. MOFs were active against both strains, exhibiting higher activity against Staphylococcus epidermidis. Thus, the potential of the developed MOFs as antibacterial agents was proved.
Collapse
Affiliation(s)
- Sorraya Najma Kinza Lelouche
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, Mostoles, 28935 Madrid, Spain; (S.N.K.L.); (C.B.)
- Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, c/ Tulipan, s/n, Mostoles, 28933 Madrid, Spain
| | - Laura Albentosa-González
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, C/Almansa 14, 02008 Albacete, Spain; (L.A.-G.); (P.C.-C.); (J.T.B.)
- Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain
| | - Pilar Clemente-Casares
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, C/Almansa 14, 02008 Albacete, Spain; (L.A.-G.); (P.C.-C.); (J.T.B.)
- Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain
| | - Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, Mostoles, 28935 Madrid, Spain; (S.N.K.L.); (C.B.)
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain;
| | - Juan Tolosa Barrilero
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, C/Almansa 14, 02008 Albacete, Spain; (L.A.-G.); (P.C.-C.); (J.T.B.)
- Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain
| | - Joaquín Calixto García-Martínez
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, C/Almansa 14, 02008 Albacete, Spain; (L.A.-G.); (P.C.-C.); (J.T.B.)
- Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, Mostoles, 28935 Madrid, Spain; (S.N.K.L.); (C.B.)
| |
Collapse
|
2
|
Zhang S, Ma X, Yu H, Lu X, Liu J, Zhang L, Wang G, Ye J, Ning G. Silver(I) metal-organic framework-embedded polylactic acid electrospun fibrous membranes for efficient inhibition of bacteria. Dalton Trans 2022; 51:6673-6681. [PMID: 35411886 DOI: 10.1039/d1dt04234c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With recent outbreaks of fatal strains of diseases and the emergency of antibiotic resistance, there is a pressing demand to discover bactericidal materials that can effectively reduce or prevent infections by pathogenic bacteria. Herein, silver(I) metal organic frameworks Ag2(HBTC) were embedded into biocompatible polylactic acid (PLA) fibrous membranes through an electrospinning process as an antibiotic-free material for effective bacterial killing. The as-synthesized Ag2(HBTC)/PLA composite membrane showed an inactivation efficiency of more than 99.9% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) at a concentration of 200-250 mg L-1. Mechanistic investigation indicated that the steady release of Ag+ ions and ˙OH generation from the composites contributed to the efficient antibacterial activities through irreversible damage to the bacterial cell membranes. In-depth proteomic analysis demonstrated that Ag2(HBTC)/PLA exerted a biological effect towards bacterial cells through down-regulating functional proteins, thereby destroying the central biochemical pathways of the cellular energy metabolism process, reducing resistance to oxidative damage and inhibiting cell division. In general, this study shows a promising perspective on designing MOF/PLA membranes with broad-spectrum disinfection capability for potential environmental sterilization and public healthcare protection.
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, PR China
| | - Xiao Ma
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, PR China
| | - Hailong Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, PR China
| | - Xinyi Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, PR China.,CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| | - Jianhui Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| | - Guangyao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, PR China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, PR China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, PR China
| |
Collapse
|
3
|
Wu YB, Wang RT, Dong GY, Fu L. Two stable cobalt(II) coordination polymers as dual-functional fluorescent sensors for efficient detection of Zn2+/Cu2+ ions and norfloxacin. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Di HP, Li Y, Gao Y. Two Cu(II) and Co(II) complexes: Magnetic properties and protective activity on burn disease by regulating the proliferation capability of mutated fibroblasts. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|