1
|
Cerqueira Caldas GK, de Abreu Souza G, Silva de Menezes A, Ferreira Pereira SR, de Cássia Silva Luz R, Damos FS. Membraneless, self-powered immunosensing of a cardiac biomarker by exploiting a PEC platform based on CaBi 2Ta 2O 9 combined with bismuth oxyiodides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6541-6550. [PMID: 37990986 DOI: 10.1039/d3ay01309j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
This work describes the development of a membraneless, self-powered immunosensor exploiting a photoelectrochemical system based on two photoelectrodes for cardiac troponin I (cTn). An electrode based on CaBi2Ta2O9 combined with bismuth oxyiodides (BiOI/Bi4O5I2/Bi5O7I) was modified with the cTnI antibody (anti-cTnI) and applied in a photoelectrochemical cell as a photoanode. To perform the cTnI detection exploiting a self-powered photoelectrochemical setup, the immunosensor (anti-cTnI/BiOI/Bi4O5I2/Bi5O7I/CaBi2Ta2O9/FTO) was coupled to a photoelectrochemical cell containing a photocathode based on CuBi2O4 (CBO/FTO) for zero-biased photoelectrochemical immunosensing of cardiac troponin I (cTnI) biomarker. For comparison purposes, the photoanode was applied for cTnI detection in a three-electrode electrochemical cell. The spectroscopic, structural, and morphological characteristics of the photoelectrochemical (PEC) materials were evaluated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) measurements were performed in the presence and absence of light to investigate the effects of photons on the charge transfer resistance of the photoanode. The influence of the cTnI biomarker on the photoelectrochemical response of the anti-cTnI antibody-modified photoelectrochemical platform (anti-cTnI/BiOI/Bi4O5I2/Bi5O7I/CaBi2Ta2O9/FTO) was evaluated by measuring the photocurrent of the system. The immunosensor presented a linear response ranging from 1 pg mL-1 to 200 ng mL-1 as well as a mean recovery percentage between 95.7% and 108.0% in real human serum samples for the cTnI biomarker.
Collapse
Affiliation(s)
| | | | - Alan Silva de Menezes
- Department of Physics, Federal University of Maranhão-UFMA, 65080-805, São Luís, MA, Brazil
| | | | | | - Flavio Santos Damos
- Department of Chemistry, Federal University of Maranhão-UFMA, 65080-805, São Luís, MA, Brazil.
| |
Collapse
|
2
|
Ji X, Li C, Liu J, Zhang T, Yang Y, Yu R, Luo X. Controlled Synthesis and Visible-Light-Driven Photocatalytic Activity of BiOBr Particles for Ultrafast Degradation of Pollutants. Molecules 2023; 28:5558. [PMID: 37513430 PMCID: PMC10384163 DOI: 10.3390/molecules28145558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
For the purpose of regulating the visible-light-driven photocatalytic properties of photocatalysts, we selected BiOBr as the research target and various routes were used. Herein, via the use of a hydrothermal method with various solvents, BiOBr particles with controllable morphology and photocatalytic activities are obtained. In particular, through changing the volume ratio of ethylene glycol (EG) to ethanol (EtOH), BiOBr compounds possess microspheres, in which samples synthesized by using EG:EtOH = 1:2 have the highest photocatalytic activity, and can completely decompose RhB under visible light irradiation within 14 min. Furthermore, we also used different volume ratios of EG and H2O reaction solvents to prepare BiOBr particles so as to further improve its pollutant removal ability. When the volume ratio of EG to H2O is 1:1, the synthesized BiOBr particles have the best photocatalytic activity, and RhB can be degraded in only 10 min upon visible light irradiation. Aside from the reaction solvent, the impact of sintering temperature on the photocatalytic properties of BiOBr particles is also explored, where its pollutant removal capacities are restrained due to the reduced specific surface area. Additionally, the visible-light-triggered photocatalytic mechanism of BiOBr particles is determined by h+, ·OH and ·O2- active species.
Collapse
Affiliation(s)
- Xiaohui Ji
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Shaanxi Province Key Laboratory of Catalysis, School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chen Li
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Shaanxi Province Key Laboratory of Catalysis, School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Junhai Liu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Shaanxi Province Key Laboratory of Catalysis, School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Tianlei Zhang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Shaanxi Province Key Laboratory of Catalysis, School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Yue Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Ruijin Yu
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Xuegang Luo
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
3
|
Li F, Sun M, Zhou B, Zhu B, Yan T, Du B, Shao Y. Z-scheme bismuth-rich bismuth oxide iodide/bismuth oxide bromide hybrids with novel spatial structure: Efficient photocatalytic degradation of phenolic contaminants accelerated by in situ generated redox mediators. J Colloid Interface Sci 2022; 614:233-246. [DOI: 10.1016/j.jcis.2022.01.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 01/12/2023]
|