Hui L, Yuhan H, Jiaqi W. Theoretical investigation on the effect of the ligand on bis-silylation of C(sp)–C(sp) by Ni complexes.
RSC Adv 2022;
12:1005-1010. [PMID:
35425119 PMCID:
PMC8979076 DOI:
10.1039/d1ra08153e]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022] Open
Abstract
Density functional theory is used to study the bis-silylation of alkyne catalysed by a transition metal nickel–organic complex. The active catalyst, organic ligand, reaction mechanism, and rate-determining step were discussed with regard to dynamics and thermodynamics. COD or SIPr (COD = cyclooctadiene, SIPr = 1,3-bis(2,6-diisopropyl-phenyl)-4,5-dihydroimidazol-2-ylidene) coordination with Ni will greatly reduce the energy barrier of the Si–Si insertion step, that is, ΔΔG reaches 15.5 kcal mol−1. Furthermore, the structure of alkynes will change the energy barrier of the alkyne insertion step.
Density functional theory (DFT) is used to study the bis-silylation of alkynes catalyzed by a transition metal nickel–organic complex; the active catalyst, the organic ligand, the reaction mechanism, and rate-determining step are discussed in this paper.![]()
Collapse