1
|
Kalisch T, Schnakenburg G, Nikonov GI, Streubel R. [4 + 1]- and [4 + 2]-cycloadditions of a thiazole-2-thione-based 1,4-diphosphinine - broadening the scope. Dalton Trans 2024; 53:16018-16022. [PMID: 39290091 DOI: 10.1039/d4dt02029d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
A broad study on [4 + 1]- and [4 + 2]-cycloaddition reactions of a thiazole-2-thione-based 1,4-diphosphinine (1) is reported, with a special focus on reversible reactions. Reactions of 1 with group 13 carbenoids DippNacNacM (M = Al and Ga) afford [4 + 1] adducts that can be classified as Al and Ga phosphides or as 7-metalla-1,4-norbornadienes. Reactions of 1 with alkynes and alkenes result in [4 + 2]-cycloaddition, affording 1,4-diphosphabarrelenes. The effect of different dienophiles on the formation of 1,4-diphosphabarrelenes and their thermal [4 + 2]-cycloreversion reactions is studied from an experimental as well as theoretical point of view, opening the door for protection/deprotection strategies in this chemistry.
Collapse
Affiliation(s)
- Tim Kalisch
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53123 Bonn, Germany.
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53123 Bonn, Germany.
| | - Georgii I Nikonov
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON, L2S 3A1, Canada.
| | - Rainer Streubel
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53123 Bonn, Germany.
| |
Collapse
|
2
|
Hu L, Chakraborty S, Tumanov N, Wouters J, Robiette R, Berionni G. Regulating iminophosphorane PN bond reactivity through geometric constraints with cage-shaped triarylphosphines. Chem Commun (Camb) 2024; 60:7073-7076. [PMID: 38888188 DOI: 10.1039/d4cc01868k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Structure-reactivity investigations and quantum-chemical parametrization of steric and electronic properties of geometrically constrained iminophosphoranes enabled the design of new frustrated Lewis pairs and revealed unusual properties at the phosphonium center embedded in the cage-shaped triptycene tricyclic scaffold.
Collapse
Affiliation(s)
- Lei Hu
- Université de Namur, Department of Chemistry, Namur Institute of Structured Matter (NISM), Rue de Bruxelles 61, Namur 5000, Belgium.
- Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, Place Louis Pasteur 1 box L4.01.02, Louvain-la-Neuve 1348, Belgium.
| | - Sayandip Chakraborty
- Université de Namur, Department of Chemistry, Namur Institute of Structured Matter (NISM), Rue de Bruxelles 61, Namur 5000, Belgium.
| | - Nikolay Tumanov
- Université de Namur, Department of Chemistry, Namur Institute of Structured Matter (NISM), Rue de Bruxelles 61, Namur 5000, Belgium.
| | - Johan Wouters
- Université de Namur, Department of Chemistry, Namur Institute of Structured Matter (NISM), Rue de Bruxelles 61, Namur 5000, Belgium.
| | - Raphaël Robiette
- Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, Place Louis Pasteur 1 box L4.01.02, Louvain-la-Neuve 1348, Belgium.
| | - Guillaume Berionni
- Université de Namur, Department of Chemistry, Namur Institute of Structured Matter (NISM), Rue de Bruxelles 61, Namur 5000, Belgium.
| |
Collapse
|
3
|
Beims N, Greven T, Schmidtmann M, van der Vlugt JI. Geometrically Deformed and Conformationally Rigid Phosphorus Trisamides Featuring an Unsymmetrical Backbone. Chemistry 2023; 29:e202302463. [PMID: 37873907 DOI: 10.1002/chem.202302463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023]
Abstract
Nonclassical P(III) centers have attracted much attention in recent years. Incorporating a P(III) center in a rigid bicyclic platform offers a particularly attractive way to invoke significant geometric distortion of the phosphorus atom that may in turn induce unusual reactivity. Although still relatively scarcely explored, phosphorus centers enforced in a non-C3 symmetry have gained significant traction lately. However, the current scaffolds are based on a relatively limited set of design principles and ligand platforms associated therewith. This work is focussed on the synthesis as well as versatile oxidation, addition and coordination chemistry of a geometrically distorted P(III) species featuring a synthetically modular, nonsymmetric trisamine platform derived from 2-(methylamino)-N-(2-(methylamino)phenyl)benzenesulfonamide.
Collapse
Affiliation(s)
- Niklas Beims
- Bioinspired Coordination Chemistry and Homogeneous Catalysis Group, Institute of Chemistry, School of Mathematics and Sciences, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Tobias Greven
- Bioinspired Coordination Chemistry and Homogeneous Catalysis Group, Institute of Chemistry, School of Mathematics and Sciences, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Marc Schmidtmann
- Bioinspired Coordination Chemistry and Homogeneous Catalysis Group, Institute of Chemistry, School of Mathematics and Sciences, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Jarl Ivar van der Vlugt
- Bioinspired Coordination Chemistry and Homogeneous Catalysis Group, Institute of Chemistry, School of Mathematics and Sciences, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| |
Collapse
|
4
|
Gildenast H, Gruszien L, Englert U. The heterometallic one-dimensional solvated coordination polymer [NiPt 2Cl 6(TRIP-Py) 4] n. Acta Crystallogr C Struct Chem 2023; 79:118-124. [PMID: 36892836 PMCID: PMC10074039 DOI: 10.1107/s2053229623001845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
The ditopic ligand 10-[4-(pyridin-4-yl)phenyl]-9-phospha-10-silatriptycene (TRIP-Py, C29H20NPSi) binds as a pyridine donor to NiII and as a phosphatriptycene donor towards PtII. The selectivity relies entirely on the Pearson character of the donor sites and the matching hardness of the respective metal cations. The product is the one-dimensional coordination polymer catena-poly[[[dichloridonickel(II)]-bis{μ-10-[4-(pyridin-4-yl)phenyl]-9-phospha-10-silatriptycene}-bis[dichloridoplatinum(II)]-bis{μ-10-[4-(pyridin-4-yl)phenyl]-9-phospha-10-silatriptycene}] dichloromethane pentasolvate ethanol icosasolvate], {[NiPt2Cl6(TRIP-Py)4]·5CH2Cl2·20EtOH}n (1), which retains large pores due to the inherent rigidity of the ligand. This is enabled by the caged triptycene scaffold which fixes the direction of the phosphorus donor with respect to the remaining molecule and especially the pyridyl moiety. In its crystal structure, which was determined from synchrotron data, the pores of the polymer are filled with dichloromethane and ethanol molecules. Finding a suitable model for the pore content is complicated as it is too disordered to give a reasonable atomic model but too ordered to be described by an electron gas solvent mask. This article presents an in-depth description of this polymer, as well as a discussion on the use of the bypass algorithm for solvent masks.
Collapse
Affiliation(s)
- Hans Gildenast
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Lukas Gruszien
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ulli Englert
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
5
|
Gildenast H, Hempelmann G, Gruszien L, Englert U. A Rigid Linker for Site-Selective Coordination of Transition Metal Cations: Combining an Acetylacetone with a Caged Phosphine. Inorg Chem 2023; 62:3178-3185. [PMID: 36757816 DOI: 10.1021/acs.inorgchem.2c04101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The combination of a soft phosphorus and a hard oxygen donor in the new ligand HacacTRIP leads to excellent site selectivity for the coordination of two different metal cations of matching Pearson character. The deprotonation step required for coordinating the acetylacetone oxygen donor further increases the selectivity. In contrast to most phosphines, the use of the caged phosphatriptycene motif enables a rigid and directional orientation of the phosphorus binding site which is required to form stable coordination network structures. In addition to the synthesis of HacacTRIP, we present its selective coordination. The deprotonated acetylacetone was selectively bound to CuII and FeIII. The solid state structure of the former displays a rare axial coordination of chloroform molecules. The phosphorus donor was selectively coordinated to the monovalent coinage metal cations CuI, AgI, and AuI. The CuI and AgI complexes represent the first examples in which a phosphatriptycene is bound to these metal cations. Heterometallic coordination compounds were characterized with combinations of these two groups. They comprise an oligonuclear CuI/CuII mixed-valence compound in which iodide binds to both CuI and CuII cations and a complex in which acacTRIP- bridges CuII and AuI. In addition to these discrete aggregates, the ligand has been used to link FeIII and AgI into a 2D coordination polymer with unprecedented trigonal planar coordination of three bulky phosphatriptycenes to a cation and resulting honeycomb topology. Its almost regular hexagons underline the desired rigidity of the ditopic acacTRIP- ligand.
Collapse
Affiliation(s)
- Hans Gildenast
- RWTH Aachen University, Institute of Inorganic Chemistry, Aachen, North Rhine-Westphalia 52074, Germany
| | - Greta Hempelmann
- RWTH Aachen University, Institute of Inorganic Chemistry, Aachen, North Rhine-Westphalia 52074, Germany
| | - Lukas Gruszien
- RWTH Aachen University, Institute of Inorganic Chemistry, Aachen, North Rhine-Westphalia 52074, Germany
| | - Ulli Englert
- RWTH Aachen University, Institute of Inorganic Chemistry, Aachen, North Rhine-Westphalia 52074, Germany.,Shanxi University, Key Laboratory of Materials for Energy Conversion and Storage, Institute of Molecular Science, Taiyuan, Shanxi 030006, China
| |
Collapse
|
6
|
Mahaut D, Berionni G, Champagne B. 9-Phosphatriptycene Derivatives: From Their Weak Basicity to Their Application in Frustrated Lewis Pair Chemistry. J Phys Chem A 2022; 126:2794-2801. [PMID: 35507420 DOI: 10.1021/acs.jpca.2c01339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The accurate prediction of the basicity of tertiary phosphines in acetonitrile and water is reported by the linear correlation between computed ΔpKa's obtained by density functional theory (DFT) and experimental values extracted from the literature. This method is applied to the prediction of pKa values of 9-phosphatriptycene derivatives and showed that they are weaker Brønsted bases than their triphenylphosphine analogues. This lower reactivity is attributed to their high pyramidalization that increases their lone pair 3s character, stabilizing its energy level. Their potential application in frustrated Lewis pair chemistry is then considered by investigating the hydrogenation of 1,1-diphenylethylene by the tris(pentafluorophenyl)borane/1-chloro-9-phosphatriptycene frustrated Lewis pair.
Collapse
Affiliation(s)
- Damien Mahaut
- Department of Chemistry, NISM (Namur Institute of Structured Matter), University of Namur, Rue de Bruxelles 61, Namur B-5000, Belgium
| | - Guillaume Berionni
- Department of Chemistry, NISM (Namur Institute of Structured Matter), University of Namur, Rue de Bruxelles 61, Namur B-5000, Belgium
| | - Benoît Champagne
- Department of Chemistry, NISM (Namur Institute of Structured Matter), University of Namur, Rue de Bruxelles 61, Namur B-5000, Belgium
| |
Collapse
|
7
|
Mahaut D, Champagne B, Berionni G. Frustrated Lewis Pair Catalyzed Hydrogenation of Unactivated Alkenes With Sterically Hindered 9‐Phosphatriptycenes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Damien Mahaut
- University of Namur: Universite de Namur Chemistry BELGIUM
| | | | - Guillaume Berionni
- University of Namur: Universite de Namur Chemistry Department Rue de Bruxelles 61 5000 Namur BELGIUM
| |
Collapse
|
8
|
Gildenast H, Gruszien L, Friedt F, Englert U. Phosphorus or Nitrogen - The first Phosphatriptycene in Coordination Polymer Chemistry. Dalton Trans 2022; 51:7828-7837. [DOI: 10.1039/d2dt00728b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphasilatriptycene, a phenylene spacer and a pyridyl moiety represent the building blocks of TRIP-Py, the first heteroditopic ligand featuring a phoshatriptycene scaffold. The P and N donor sites located at...
Collapse
|