1
|
Bühler R, Weininger RJJ, Stephan J, Muhr M, Bock BMT, Gemel C, Fischer RA. Homoleptic hexa- and penta-coordinated gallium(I) amide complexes of ruthenium and molybdenum. Dalton Trans 2024; 53:17162-17168. [PMID: 38687113 DOI: 10.1039/d4dt00823e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Reaction of neutral olefin complexes of ruthenium and molybdenum with GaTMP (TMP = 2,2,6,6-tetramethylpiperidinyl) by substitution leads to the formation of respective five- and six-coordinated homoleptic products. [Ru(GaTMP)5] (1) and [Mo(GaTMP)6] (2) were isolated and characterized. Core structure geometries were analyzed using continuous shape measure, and the complexes were subjected to DFT calculations unveiling competing π-interactions between the transition metal center and the amido substituent with the unoccupied pπ orbitals of the gallium.
Collapse
Affiliation(s)
- Raphael Bühler
- Chair of Inorganic and Metalorganic Chemistry, Technical University of Munich, School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany and Catalysis Research Center, Erst-Otto-Fischer-Straße 1, 85748 Garching, Germany.
| | - Richard J J Weininger
- Chair of Inorganic and Metalorganic Chemistry, Technical University of Munich, School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany and Catalysis Research Center, Erst-Otto-Fischer-Straße 1, 85748 Garching, Germany.
| | - Johannes Stephan
- Chair of Inorganic and Metalorganic Chemistry, Technical University of Munich, School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany and Catalysis Research Center, Erst-Otto-Fischer-Straße 1, 85748 Garching, Germany.
| | - Maximilian Muhr
- Chair of Inorganic and Metalorganic Chemistry, Technical University of Munich, School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany and Catalysis Research Center, Erst-Otto-Fischer-Straße 1, 85748 Garching, Germany.
| | - Balasai M-T Bock
- Chair of Inorganic and Metalorganic Chemistry, Technical University of Munich, School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany and Catalysis Research Center, Erst-Otto-Fischer-Straße 1, 85748 Garching, Germany.
| | - Christian Gemel
- Chair of Inorganic and Metalorganic Chemistry, Technical University of Munich, School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany and Catalysis Research Center, Erst-Otto-Fischer-Straße 1, 85748 Garching, Germany.
| | - Roland A Fischer
- Chair of Inorganic and Metalorganic Chemistry, Technical University of Munich, School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany and Catalysis Research Center, Erst-Otto-Fischer-Straße 1, 85748 Garching, Germany.
| |
Collapse
|
2
|
Antsiburov I, Stephan J, Weininger RJ, Gemel C, Fischer RA. Copper Imidazolin-imine Coordination Compounds as Precursors for a Cu/Al Complex. Inorg Chem 2024; 63:17331-17339. [PMID: 39258868 PMCID: PMC11423405 DOI: 10.1021/acs.inorgchem.4c02530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
The reactions of [(CF3SO3Cu)2(C6H6)] with the sterically hindered imidazolin-2-imine ligands DippImTMS (1,3-Bis(2,6-diisopropylphenyl)-2-(trimethylsilylimino)imidazoline) or DippImH (1,3-bis(2,6-diisopropylphenyl) imidazolin-2-imine) lead to the formation of the linear copper(I) complexes [Cu(DippImTMS)(OTf)] (1) and [Cu(DippImH)2][OTf] (2), respectively. The triflate counteranion in 2 can be easily exchanged to the weakly coordinating [BArF] giving [Cu(DippImH)2][BArF] (3) (BArF = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate). Substitution of the N-heterocyclic imine (NHI) ligand in 3 by AlCp* (Cp* = pentamethylcyclopentadienyl) gives the tetrahedral [Cu(AlCp*)4][BArF] (5). The reaction between lithiated imidazolin-2-iminate DippImLi and CuCl results in the triangular cluster [Cu3(DippIm)2Cl] (4). All products have been fully characterized by 1H- and 13C NMR, mass spectrometry, as well as SC-XRD.
Collapse
Affiliation(s)
- Ivan Antsiburov
- Technical
University of Munich, School of Natural
Sciences, Department of Chemistry, Chair of Inorganic and Metal−Organic
Chemistry Lichtenbergstrasse
4, 85748 Garching, Germany
- Technical
University of Munich, Catalysis Research
Center, Ernst-Otto-Fischer
Strasse 1, 85748 Garching, Germany
| | - Johannes Stephan
- Technical
University of Munich, School of Natural
Sciences, Department of Chemistry, Chair of Inorganic and Metal−Organic
Chemistry Lichtenbergstrasse
4, 85748 Garching, Germany
- Technical
University of Munich, Catalysis Research
Center, Ernst-Otto-Fischer
Strasse 1, 85748 Garching, Germany
| | - Richard J.J. Weininger
- Technical
University of Munich, School of Natural
Sciences, Department of Chemistry, Chair of Inorganic and Metal−Organic
Chemistry Lichtenbergstrasse
4, 85748 Garching, Germany
- Technical
University of Munich, Catalysis Research
Center, Ernst-Otto-Fischer
Strasse 1, 85748 Garching, Germany
| | - Christian Gemel
- Technical
University of Munich, School of Natural
Sciences, Department of Chemistry, Chair of Inorganic and Metal−Organic
Chemistry Lichtenbergstrasse
4, 85748 Garching, Germany
- Technical
University of Munich, Catalysis Research
Center, Ernst-Otto-Fischer
Strasse 1, 85748 Garching, Germany
| | - Roland A. Fischer
- Technical
University of Munich, School of Natural
Sciences, Department of Chemistry, Chair of Inorganic and Metal−Organic
Chemistry Lichtenbergstrasse
4, 85748 Garching, Germany
- Technical
University of Munich, Catalysis Research
Center, Ernst-Otto-Fischer
Strasse 1, 85748 Garching, Germany
| |
Collapse
|
3
|
Lenz TM, Chiorescu I, Napoli FE, Liu JY, Rieger B. Aluminum Alkyl Induced Isomerization of Group IV meso Metallocene Complexes. Angew Chem Int Ed Engl 2024; 63:e202406848. [PMID: 38972850 DOI: 10.1002/anie.202406848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
The synthesis of group IV metallocene precatalysts for the polymerization of propylene generally yields two different isomers: The racemic isomer that produces isotactic polypropylene (iPP) and the meso isomer that produces atactic polypropylene (aPP). Due to its poor physical properties, aPP has very limited applications. To avoid obtaining blends of both polymers and thus diminish the mechanical and thermal properties of iPP, the meso metallocene complexes need to be separated from the racemic ones tediously-rendering the metallocene-based polymerization of propylene industrially far less attractive than the Ziegler/Natta process. To overcome this issue, we established an isomerization protocol to convert meso metallocene complexes into their racemic counterparts. This protocol increased the yield of iPP by 400 % while maintaining the polymer's excellent physical properties and was applicable to both hafnocene and zirconocene complexes, as well as different precatalyst activation methods. Through targeted variation of the ligand frameworks, methoxy groups at the indenyl moieties were found to be the structural motifs responsible for an isomerization to take place-this experimental evidence was confirmed by density functional theory calculations. Liquid injection field desorption ionization mass spectrometry, as well as 1H and 29Si nuclear magnetic resonance studies, allowed the proposal of an isomerization mechanism.
Collapse
Affiliation(s)
- Tim M Lenz
- Wacker-Lehrstuhl für Makromolekulare Chemie Catalysis Research Center, Technische Universität München TUM School of Natural Sciences, Lichtenbergstraße 4, 85748, Garching Garching bei München, Germany
| | - Ion Chiorescu
- Department Chemie, Technische Universität München TUM School of Natural Sciences, Lichtenbergstraße 4, 85748, Garching Garching bei München, Germany
| | - Fabrizio E Napoli
- Lehrstuhl für Anorganische und Metallorganische Chemie Catalysis Research Center, Technische Universität München TUM School of Natural Sciences, Lichtenbergstraße 4, 85748, Garching Garching bei München, Germany
| | - Jin Y Liu
- Wacker-Lehrstuhl für Makromolekulare Chemie Catalysis Research Center, Technische Universität München TUM School of Natural Sciences, Lichtenbergstraße 4, 85748, Garching Garching bei München, Germany
| | - Bernhard Rieger
- Wacker-Lehrstuhl für Makromolekulare Chemie Catalysis Research Center, Technische Universität München TUM School of Natural Sciences, Lichtenbergstraße 4, 85748, Garching Garching bei München, Germany
| |
Collapse
|
4
|
Bühler R, Wolf RM, Gemel C, Stephan J, Deger SN, Kahlal S, Fischer RA, Saillard JY. Cuprophilic Interactions in Polymeric [Cu 10O 2(Mes) 6] n. Inorg Chem 2024. [PMID: 39253905 DOI: 10.1021/acs.inorgchem.4c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The properties of cuprophilic compounds and the underlying fundamental principles responsible for the Cu(I)···Cu(I) interactions have been the subject of intense research as their diverse structural and physical attributes are being explored. In this light, we performed a new study of the compound [Cu10O2(Mes)6] reported by Haakansson et al. using state of the art experimental and theoretical analysis techniques. Doing this, we found the compound to be a polymer in the solid state, best written as [Cu10O2(Mes)6]n, with unsupported Cu(I)···Cu(I) contacts linking the monomers (2.776 Å). The monomeric unit also exhibits various cuprophilic contacts bridged by mesityl and/or oxo ligands. The compound was analyzed in its solid state, revealing luminescent properties resulting from two distinct fluorescent emissions, as well as in solution, in which its polymeric structure reversibly decomposes. A quantum theory of atoms in molecules (QTAIM) analysis based on density functional theory (DFT) calculations allows to characterize the various Cu(I)···Cu(I) contacts, in which only a few, and not necessarily the shortest, are associated with a bond critical point. Additionally, an energy decomposition analysis of the bonding between monomers indicates that it is dominated by dispersion forces in which the ligands play a dominant role, resulting in bonding energies significantly larger than found in previous DFT investigations based on less bulky models.
Collapse
Affiliation(s)
- Raphael Bühler
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Robert M Wolf
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Christian Gemel
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Johannes Stephan
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Simon N Deger
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000 Rennes, France
| | - Roland A Fischer
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Catalysis Research Centre, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | | |
Collapse
|
5
|
Doleschal ME, Kostenko A, Liu JY, Inoue S. Isolation of a NHC-stabilized heavier nitrile and its conversion into an isonitrile analogue. Nat Chem 2024:10.1038/s41557-024-01618-6. [PMID: 39256544 DOI: 10.1038/s41557-024-01618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Nitriles (R-C≡N) have been investigated since the late eighteenth century and are ubiquitous encounters in organic and inorganic syntheses. In contrast, heavier nitriles, which contain the heavier analogues of carbon and nitrogen, are sparsely investigated species. Here we report the synthesis and isolation of a phosphino-silylene featuring an N-heterocyclic carbene-phosphinidene and a highly sterically demanding silyl group as substituents. Due to its unique structural motif, it can be regarded as a Lewis base-stabilized heavier nitrile. The Si-P bond displays multiple bond character and a bent R-Si-P geometry, the latter indicating fundamental differences between heavier and classical nitriles. In solution, a quantitative unusual rearrangement to a phosphasilenylidene occurs. This rearrangement is consistent with theoretical predictions of rearrangements from heavier nitriles to heavier isonitriles. Our preliminary reactivity studies revealed that both isomers exhibit highly nucleophilic silicon centres capable of oxidative addition and coordination to iron tetracarbonyl.
Collapse
Affiliation(s)
- Martin E Doleschal
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Jin Yu Liu
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany.
| |
Collapse
|
6
|
Schweinfurth J, Linden HB, Gross JH. Robust and versatile assembly for emitter positioning, observation, and heating in atmospheric pressure field desorption mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2024; 30:103-115. [PMID: 38489825 PMCID: PMC11063571 DOI: 10.1177/14690667241236073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Atmospheric pressure field desorption (APFD) mass spectrometry (MS) has recently been introduced as a new variant of field desorption (FD) mass spectrometry. The development aimed at providing the basic characteristics of FD-MS in combination with instruments equipped with an atmospheric pressure (AP) interface. Hitherto, APFD has been demonstrated to yield both positive and negative even electron ions of highly polar or ionic compounds as well as to enable the generation of positive molecular ions, M+•, of polycyclic aromatic compounds. The prototype setup for APFD was based on a nano-electrospray ionization (nanoESI) source slightly modified to allow for emitter positioning in front of the AP interface of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. The entrance electrode of the interface was set to negative or positive high voltage with respect to the emitter at ground potential, thereby permitting the formation of positive or negative ions, respectively. This work describes a custom-built device for quicker and more reproducible sample loading on and positioning of field emitters at the entrance electrode of the atmospheric pressure interface of a mass spectrometer. In addition, the device provides means for observation of the emitter during operation and for resistive emitter heating as employed in traditional FD-MS. Emitter heating both speeds up the desorption of the analytes and allows for the desorption/ionization of analytes of higher molecular weight than without emitter heating. In some cases, the signal-to-noise ratio of APFD mass spectra is improved due to higher ion currents effected by compressing the entire process into shorter periods of spectral acquisition. The new setup enables robust and reliable operation in APFD-MS. Moreover, it has been designed as to allow for use on a range of instruments as it can either be used on an FT-ICR mass spectrometer or in combination with a trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) instrument.
Collapse
Affiliation(s)
- Jan Schweinfurth
- Institute of Inorganic Chemistry, Heidelberg University, Heidelberg, Germany
| | | | - Jürgen H. Gross
- Institute of Organic Chemistry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Antsiburov I, Schütz M, Bühler R, Muhr M, Stephan J, Gemel C, Klein W, Kahlal S, Saillard JY, Fischer RA. All-Hydrocarbon-Ligated Superatomic Gold/Aluminum Clusters. Inorg Chem 2024; 63:3749-3756. [PMID: 38335041 PMCID: PMC10900290 DOI: 10.1021/acs.inorgchem.3c03790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Key strategies in cluster synthesis include the use of modulating agents (e.g., coordinating additives). We studied the influence of various phosphines exhibiting different steric and electronic properties on the reduction of the Au(I) precursor to Au(0) clusters. We report a synthesis of the bimetallic clusters [Au6(AlCp*)6] = [Au6Al6](Cp*)6 (1) and [HAu7(AlCp*)6] = [HAu7Al6](Cp*)6 (2) (Cp* = pentamethylcyclopentadiene) using Au(I) precursors and AlCp*. The cluster [Au2(AlCp*)5] = [Au2Al5](Cp*)5 (3) was isolated and identified as an intermediate species in the reactions to 1 and 2. The processes of cluster growth and degradation were investigated by in situ 1H NMR and LIFDI-MS techniques. The structures of 1 and 2 were established by DFT geometry optimization. These octahedral clusters can both be described as closed-shell 18-electron superatoms.
Collapse
Affiliation(s)
- Ivan Antsiburov
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Max Schütz
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Raphael Bühler
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Maximilian Muhr
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Johannes Stephan
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Christian Gemel
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Wilhelm Klein
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, Beaulieu, Rennes F-35000, France
| | | | - Roland A Fischer
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| |
Collapse
|
8
|
Muhr M, Stephan J, Staiger L, Hemmer K, Schütz M, Heiß P, Jandl C, Cokoja M, Kratky T, Günther S, Huber D, Kahlal S, Saillard JY, Cador O, Da Silva ACH, Da Silva JLF, Mink J, Gemel C, Fischer RA. Assignment of individual structures from intermetalloid nickel gallium cluster ensembles. Commun Chem 2024; 7:29. [PMID: 38351167 PMCID: PMC10864300 DOI: 10.1038/s42004-024-01110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Poorly selective mixed-metal cluster synthesis and separation yield reaction solutions of inseparable intermetalloid cluster mixtures, which are often discarded. High-resolution mass spectrometry, however, can provide precise compositional data of such product mixtures. Structure assignments can be achieved by advanced computational screening and consideration of the complete structural space. Here, we experimentally verify structure and composition of a whole cluster ensemble by combining a set of spectroscopic techniques. Our study case are the very similar nickel/gallium clusters of M12, M13 and M14 core composition Ni6+xGa6+y (x + y ≤ 2). The rationalization of structure, bonding and reactivity is built upon the organometallic superatom cluster [Ni6Ga6](Cp*)6 = [Ga6](NiCp*)6 (1; Cp* = C5Me5). The structural conclusions are validated by reactivity tests using carbon monoxide, which selectively binds to Ni sites, whereas (triisopropylsilyl)acetylene selectively binds to Ga sites.
Collapse
Affiliation(s)
- Maximilian Muhr
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Johannes Stephan
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Lena Staiger
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Karina Hemmer
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Max Schütz
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Patricia Heiß
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Christian Jandl
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Mirza Cokoja
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Tim Kratky
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Sebastian Günther
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Dominik Huber
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Samia Kahlal
- Univ Rennes CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | | | - Olivier Cador
- Univ Rennes CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Augusto C H Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P. O. Box 780, 13560-970, São Carlos, SP, Brazil
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P. O. Box 780, 13560-970, São Carlos, SP, Brazil
| | - Janos Mink
- Hungarian Academy of Sciences, Institute of Material and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Christian Gemel
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Roland A Fischer
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany.
| |
Collapse
|
9
|
Gross JH. Application of atmospheric pressure field desorption for the analysis of anionic surfactants in commercial detergents. Anal Bioanal Chem 2023; 415:6421-6430. [PMID: 37644322 PMCID: PMC10567867 DOI: 10.1007/s00216-023-04917-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Recent work has shown that field desorption (FD) and field ionization (FI) using activated field emitters may be performed at atmospheric pressure, too. While some limitations apply to atmospheric pressure field desorption (APFD) mass spectrometry (MS), the method can deliver both positive and negative even electron ions of highly polar or ionic compounds. Furthermore, APFD even permits the generation of positive molecular ions of polycyclic aromatic compounds. Here, an application of negative-ion APFD for the analysis of anionic surfactants contained in commercial detergent products for body care, household, and technical uses is presented. The samples include liquid soaps and shower gels, dishwashing liquids, and cooling lubricants. Surfactant solutions in methanol/water or pure methanol at 2-10 µl ml-1 were deposited on commercial 13-µm activated tungsten emitters. The emitters were positioned in front of the atmospheric pressure interface of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer by means of a slightly modified nano-electrospray ionization (nanoESI) source. The entrance electrode of the interface was set to positive high voltage with respect to the emitter at ground potential. Under these conditions, negative-ion desorption was achieved. The surfactant anions, organic sulfates and organic sulfonates, were characterized by accurate mass-based formula assignments, and in part, by tandem mass spectrometry. The negative-ion APFD spectra were compared to results by negative-ion electrospray ionization (ESI) either obtained using the FT-ICR mass spectrometer or by using a trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) instrument when product ions of low m/z needed to be detected in tandem MS.
Collapse
Affiliation(s)
- Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Muhr M, Liang H, Allmendinger L, Bühler R, Napoli FE, Ukaj D, Cokoja M, Jandl C, Kahlal S, Saillard JY, Gemel C, Fischer RA. Catalytic Alkyne Semihydrogenation with Polyhydride Ni/Ga Clusters. Angew Chem Int Ed Engl 2023; 62:e202308790. [PMID: 37408378 DOI: 10.1002/anie.202308790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
The bimetallic, decanuclear Ni3 Ga7 -cluster of the formula [Ni3 (GaTMP)3 (μ2 -GaTMP)3 (μ3 -GaTMP)] (1, TMP=2,2,6,6-tetramethylpiperidinyl) reacts reversibly with dihydrogen under the formation of a series of (poly-)hydride clusters 2. Low-temperature 2D NMR experiments at -80 °C show that 2 consist of a mixture of a di- (2Di ), tetra- (2Tetra ) and hexahydride species (2Hexa ). The structures of 2Di and 2Tetra are assessed by a combination of 2D NMR spectroscopy and DFT calculations. The cooperation of both metals is essential for the high hydrogen uptake of the cluster. Polyhydrides 2 are catalytically active in the semihydrogenation of 4-octyne to 4-octene with good selectivity. The example is the first of its kind and conceptually relates properties of molecular, atom-precise transition metal/main group metal clusters to the respective solid-state phase in catalysis.
Collapse
Affiliation(s)
- Maximilian Muhr
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany
- Catalysis Research Centre, Technical University Munich, Ernst-Otto-Fischer Straße 1, 85748, Garching, Germany
| | - Hao Liang
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000, Rennes, France
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 7, 81377, Munich, Germany
| | - Raphael Bühler
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany
- Catalysis Research Centre, Technical University Munich, Ernst-Otto-Fischer Straße 1, 85748, Garching, Germany
| | - Fabrizio E Napoli
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany
- Catalysis Research Centre, Technical University Munich, Ernst-Otto-Fischer Straße 1, 85748, Garching, Germany
| | - Dardan Ukaj
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany
- Catalysis Research Centre, Technical University Munich, Ernst-Otto-Fischer Straße 1, 85748, Garching, Germany
| | - Mirza Cokoja
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany
- Catalysis Research Centre, Technical University Munich, Ernst-Otto-Fischer Straße 1, 85748, Garching, Germany
| | - Christian Jandl
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany
- Catalysis Research Centre, Technical University Munich, Ernst-Otto-Fischer Straße 1, 85748, Garching, Germany
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000, Rennes, France
| | | | - Christian Gemel
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany
- Catalysis Research Centre, Technical University Munich, Ernst-Otto-Fischer Straße 1, 85748, Garching, Germany
| | - Roland A Fischer
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany
- Catalysis Research Centre, Technical University Munich, Ernst-Otto-Fischer Straße 1, 85748, Garching, Germany
| |
Collapse
|
11
|
Hood T, Lau S, Diefenbach M, Firmstone L, Mahon M, Krewald V, Webster RL. The Complex Reactivity of [(salen)Fe] 2(μ-O) with HBpin and Its Implications in Catalysis. ACS Catal 2023; 13:11841-11850. [PMID: 37671182 PMCID: PMC10476159 DOI: 10.1021/acscatal.3c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Indexed: 09/07/2023]
Abstract
We report a detailed study into the method of precatalyst activation during alkyne cyclotrimerization. During these studies we have prepared a homologous series of Fe(III)-μ-oxo(salen) complexes and use a range of techniques including UV-vis, reaction monitoring studies, single crystal X-ray diffraction, NMR spectroscopy, and LIFDI mass spectrometry to provide experimental evidence for the nature of the on-cycle iron catalyst. These data infer the likelihood of ligand reduction, generating an iron(salan)-boryl complex as a key on-cycle intermediate. We use DFT studies to interrogate spin states, connecting this to experimentally identified diamagnetic and paramagnetic species. The extreme conformational flexibility of the salan system appears connected to challenges associated with crystallization of likely on-cycle species.
Collapse
Affiliation(s)
- Thomas
M. Hood
- Department
of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom BA2 7AY
| | - Samantha Lau
- Department
of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom BA2 7AY
| | - Martin Diefenbach
- Department
of Chemistry, TU Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Leah Firmstone
- Department
of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom BA2 7AY
| | - Mary Mahon
- Department
of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom BA2 7AY
| | - Vera Krewald
- Department
of Chemistry, TU Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Ruth L. Webster
- Department
of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom BA2 7AY
| |
Collapse
|
12
|
Taubert J, Vogt M, Langer R. Mass spectrometric detection of ion pairs containing rigid copper clusters and weakly coordinating counter ions using liquid injection field desorption/ionisation. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:68-74. [PMID: 36437773 DOI: 10.1177/14690667221139419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A comparative mass spectrometric investigation using electrospray ionisation (ESI) and liquid injection field desorption/ionisation (LIFDI) techniques is reported for the highly luminescent and cationic copper cluster [(PCP)3Cu4]+ (1[Formula: see text], PCP = [1,3-(Ph2P)2C6H3]-). Depending on the available counter ion X-, ion pairs consisting of the original or a modified cluster cation and the weakly coordinating counter ion can be detected by LIFDI-high-resolution-mass spectrometry in addition to the cluster cation. Notably, only large counter ions with an extremely low tendency for metal coordination give rise to the observation of ion pairs, whereas smaller ions such as BF4- do not show peaks corresponding to ion pairs in their mass spectra. In principle, two pathways were identified for the formation of positively charged ion pairs: (i) association of a generated Cu+ ion to the neutral ion pair [(PCP)3Cu4]X (1+X, X- = BAr20F, BAr24F) and (ii) abstraction of an electron from the neutral ion pair [(PCP)3Cu4]X (1+X), leading to the oxidised ion pair [1+X][Formula: see text] (X- = Al(ORF)4).
Collapse
Affiliation(s)
- Julia Taubert
- Institute of Chemistry, Faculty of Natural Science II, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Matthias Vogt
- Institute of Chemistry, Faculty of Natural Science II, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Robert Langer
- Institute of Chemistry, Faculty of Natural Science II, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
13
|
Hoyer M, Gross JH. Molecular ion formation on activated field emitters in atmospheric pressure field desorption mass spectrometry. Anal Bioanal Chem 2023; 415:2307-2315. [PMID: 36961573 PMCID: PMC10115680 DOI: 10.1007/s00216-023-04652-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023]
Abstract
Atmospheric pressure field desorption (APFD) mass spectrometry (MS) has recently been explored as a new contribution to the field of ambient desorption/ionization (ADI). Depending on the selected polarity applied to the field emitter, ionic and polar analytes were demonstrated to deliver positive as well as negative ions. Whereas this recent study solely reported on the formation of even-electron ions of either polarity, the present work on APFD-MS demonstrates the abundant formation of positive molecular ions, M+•, from polycyclic aromatic compounds. Molecular ions were formed on and desorbed from standard 13-µm activated tungsten wire emitters at atmospheric pressure. The commercial field emitters were positioned at about 2 mm distance in front of the atmospheric pressure interface of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer and the entrance electrode of the interface was set to -4.5 to -5.5 kV with respect to the emitter. Emitter-disrupting electric discharges did normally not occur under these conditions. The electric field strengths achieved at the dendritic microneedles were sufficient to allow for the abundant formation of M+• ions of various polycyclic aromatic compounds such as benzo[a]pyrene, anthracene, fluoranthene, 1,1,4,4-tetraphenyl-butadiene, and 1-aza-[6]helicene. In case of the extremely basic 1-aza-[6]helicene protonation strongly competed with molecular ion formation and tended to suppress the field ionization process. All molecular ion compositions were assured by accurate mass-based formula assignments.
Collapse
Affiliation(s)
- Matthias Hoyer
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
| |
Collapse
|
14
|
Gross JH. Desorption of positive and negative ions from activated field emitters at atmospheric pressure. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:21-32. [PMID: 36254584 PMCID: PMC9903004 DOI: 10.1177/14690667221133388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Field desorption (FD) traditionally is an ionization technique in mass spectrometry (MS) that is performed in high vacuum. So far only two studies have explored FD at atmospheric pressure or even superatmospheric pressure, respectively. This work pursues ion desorption from 13-µm activated tungsten emitters at atmospheric pressure. The emitters are positioned in front of the atmospheric pressure interface of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer and the entrance electrode of the interface is set to 3-5 kV with respect to the emitter. Under these conditions positive, and for the first time, negative ion desorption is achieved. In either polarity, atmospheric pressure field desorption (APFD) is robust and spectra are reproducible. Both singly charged positive and negative ions formed by these processes are characterized by accurate mass-based formula assignments and in part by tandem mass spectrometry. The compounds analyzed include the ionic liquids trihexyl(tetradecyl) phosphonium tris(pentafluoroethyl) trifluorophosphate) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, the acidic compounds perfluorononanoic acid and polyethylene glycol diacid, as well as two amino-terminated polypropylene glycols. Some surface mobility on the emitter is prerequisite for ion desorption to occur. While ionic liquids inherently provide this mobility, the desorption of ions from solid analytes requires the assistance of a liquid matrix, e.g. glycerol.
Collapse
Affiliation(s)
- Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Linden MH, Linden HB. Unprecedented intact radical anions, closed shell anions, cluster ions, and traditional cations and radical cations by LIFDI-MS. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:5-11. [PMID: 36605010 DOI: 10.1177/14690667221146079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Liquid injection field desorption ionization (LIFDI) proves the extraordinary softness of the ionization process combined with a convenient sample supply under the exclusion of moisture and air. LIFDI-mass spectrometry (MS) is used for organometallic and other seriously air-sensitive compounds forming intact ions without substantial fragmentation. Unprecedented molecular radical anions M-• are presented along with well-known intact M+• radical cations. Furthermore closed shell cations [C]+ and adduct ions like [M + H]+ or [M + Alkali]+ are gently transferred from the solid emitter surface into the gas phase. Anions [A]- or [M - H]- are accessible by LIFDI-MS at medium field strengths. Ion pairs [C]+[A]- are separately detected by positive and negative mode LIFDI-MS, respectively. Here we give an overview of the different ion types accessible by LIFDI-MS. For the first time the field ionization/desorption of solar cell electron acceptor compounds is shown to deliver M-• and M2-• radical ions.
Collapse
|
16
|
Boysen N, Devi A. Liquid injection field desorption/ionization as a powerful tool to characterize volatile, labile, and reactive metal-organic complexes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:12-20. [PMID: 36579795 DOI: 10.1177/14690667221146687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electron ionization mass spectrometry (EI-MS) is often used to characterize volatile and thermally stable organometallic complexes relevant for chemical vapor deposition (CVD) processes. However, this method has limitations for thermally unstable and labile organometallic complexes. In this context, EI-MS is not the preferred method of choice for characterizing such compounds. With three different representative organometallic complexes based on the transition metals yttrium, iridium, and silver, relevant as precursors for CVD of different materials, the significance of liquid injection field desorption/ionization mass spectrometry (LIFDI-MS) as an important precursor characterization tool is exemplified. The precursors are not only reactive toward ambient air, but also thermally labile especially in the case of iridium and silver complexes. As a promising alternative, LIFDI-MS is used to overcome the limitations of EI-MS. For the first time, these complexes were successfully analyzed using LIFDI-MS. The comparison between EI-MS and LIFDI-MS highlights that LIFDI-MS is superior for the mass spectrometric analysis of sensitive and labile complexes. In terms of precursor characterization, LIFDI-MS can be fully exploited to gain valuable insights into the decomposition mechanisms and identifying the nuclearity of organometallic precursors used for CVD applications.
Collapse
Affiliation(s)
- Nils Boysen
- Inorganic Materials Chemistry (IMC), 9142Ruhr University Bochum, Bochum, Germany
| | - Anjana Devi
- Inorganic Materials Chemistry (IMC), 9142Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Saurwein A, Eisner T, Inoue S, Rieger B. Steric and Electronic Properties of Phosphinimide-Based Silylenes─The Influence of the Phosphine Moiety. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas Saurwein
- WACKER-Chair of Macromolecular Chemistry, Technical University of Munich, 85748 Garching, Germany
- WACKER-Institute of Silicon Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Teresa Eisner
- WACKER-Institute of Silicon Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Shigeyoshi Inoue
- WACKER-Institute of Silicon Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
18
|
Tadiello L, Drexler HJ, Beweries T. Low-Field Flow 31P NMR Spectroscopy for Organometallic Chemistry: On-Line Analysis of Highly Air-Sensitive Rhodium Diphosphine Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Tadiello
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hans-Joachim Drexler
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Torsten Beweries
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
19
|
Muhr M, Bühler R, Liang H, Gilch J, Jandl C, Kahlal S, Saillard J, Gemel C, Fischer RA. C-H and Si-H Activation Reactions at Ru/Ga Complexes: A Combined Experimental and Theoretical Case Study on the Ru-Ga Bond. Chemistry 2022; 28:e202200887. [PMID: 35748293 PMCID: PMC9804459 DOI: 10.1002/chem.202200887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 01/05/2023]
Abstract
Treatment of [Ru(COD)(MeAllyl)2 ] and [Ru(COD)(COT)] with GaCp* under hydrogenolytic conditions leads to reactive intermediates which activate Si-H or C-H bonds, respectively. The product complexes [Ru(GaCp*)3 (SiEt3 )H3 ] (1) and [Ru(GaCp*)3 (C7 H7 )H3 ] (2) are formed with HSiEt3 or with toluene as the solvent, respectively. While 1 was isolated and fully characterized by NMR, MS, IR and SC-XRD, 2 was too labile to be isolated and was observed and characterized in situ by using mass spectrometry, including labelling experiments for the unambiguous assignment of the elemental composition. The structural assignment was confirmed by DFT calculations. The relative energies of the four isomers possible upon toluene activation at the ortho-, meta-, para- and CH3 -positions have been determined and point to aromatic C-H activation. The Ru-Ga bond was analyzed by EDA and QTAIM and compared to the Ru-P bond in the analogue phosphine compound. Bonding analyses indicate that the Ru-GaCp* bond is weaker than the Ru-PR3 bond.
Collapse
Affiliation(s)
- Maximilian Muhr
- Chair of Inorganic and Metalorganic ChemistryDepartment of ChemistryCatalysis Research Center (CRC)Technical University Munich (TUM)Lichtenbergstraße 485748GarchingGermany
| | - Raphael Bühler
- Chair of Inorganic and Metalorganic ChemistryDepartment of ChemistryCatalysis Research Center (CRC)Technical University Munich (TUM)Lichtenbergstraße 485748GarchingGermany
| | - Hao Liang
- UMR-CNRS6226 “Institut des Sciences Chimiques de Rennes”Univ RennesCNRSISCR-UMR 622635000RennesFrance
| | - Jonas Gilch
- Chair of Inorganic and Metalorganic ChemistryDepartment of ChemistryCatalysis Research Center (CRC)Technical University Munich (TUM)Lichtenbergstraße 485748GarchingGermany
| | - Christian Jandl
- Chair of Inorganic and Metalorganic ChemistryDepartment of ChemistryCatalysis Research Center (CRC)Technical University Munich (TUM)Lichtenbergstraße 485748GarchingGermany
| | - Samia Kahlal
- UMR-CNRS6226 “Institut des Sciences Chimiques de Rennes”Univ RennesCNRSISCR-UMR 622635000RennesFrance
| | - Jean‐Yves Saillard
- UMR-CNRS6226 “Institut des Sciences Chimiques de Rennes”Univ RennesCNRSISCR-UMR 622635000RennesFrance
| | - Christian Gemel
- Chair of Inorganic and Metalorganic ChemistryDepartment of ChemistryCatalysis Research Center (CRC)Technical University Munich (TUM)Lichtenbergstraße 485748GarchingGermany
| | - Roland A. Fischer
- Chair of Inorganic and Metalorganic ChemistryDepartment of ChemistryCatalysis Research Center (CRC)Technical University Munich (TUM)Lichtenbergstraße 485748GarchingGermany
| |
Collapse
|
20
|
Sarkar D, Groll L, Munz D, Hanusch F, Inoue S. Ligand Assisted CO2 Sequestration and Catalytic Valorization by an NHI‐Stabilized Stannylene. ChemCatChem 2022. [DOI: 10.1002/cctc.202201048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Debotra Sarkar
- Technical University of Munich: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Lisa Groll
- Technical University Munich: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Dominik Munz
- Saarland University - Campus Saarbrucken: Universitat des Saarlandes Inorganic Chemistry GERMANY
| | - Franziska Hanusch
- Technical University of Munich: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Shigeyoshi Inoue
- Technische Universität München Fakultät für Chemie Lichtenbergstraße 485748 Garching 85748 Garching bei München GERMANY
| |
Collapse
|
21
|
Hadlington TJ, Keil PM. Protonation of Hydrido‐Tetrylenes: H2 Elimination vs. Tetrylium Cation Formation. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Philip Maximillian Keil
- Technical University Munich: Technische Universitat Munchen Department of Chemistry Lichtenberg Str 4 85748 Garching GERMANY
| |
Collapse
|
22
|
Heiß P, Hornung J, Gemel C, Fischer RA. A combinatorial coordination-modulated approach to all-hydrocarbon-ligated intermetallic clusters. Chem Commun (Camb) 2022; 58:4332-4335. [PMID: 35290423 DOI: 10.1039/d2cc00396a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of Hume-Rothery-inspired intermetallic and all-hydrocarbon-ligated Ni/E clusters (E = Al, Ga) is studied. A library of organo-metallic complexes and small clusters is obtained when [Ni(cod)2] is treated with ECp* in the presence of 3-hexyne (hex). While the alkyne reversibly coordinates side-on to the Ni/Ga species, it dimerizes at the Ni/Al species. The mass spectrometric monitoring of the reaction solutions provides insight into the chemical complexity generated by a combinatorial, coordination-modulated approach to control cluster nucleation and growth aiming at cluster size-focusing and selective synthesis of species such as [Ni4Ga4](Cp*)4(hex)2.
Collapse
Affiliation(s)
- Patricia Heiß
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching D-85748, Germany. .,Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Strasse 1, Garching D-85748, Germany
| | - Julius Hornung
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching D-85748, Germany. .,Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Strasse 1, Garching D-85748, Germany
| | - Christian Gemel
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching D-85748, Germany. .,Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Strasse 1, Garching D-85748, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching D-85748, Germany. .,Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Strasse 1, Garching D-85748, Germany
| |
Collapse
|
23
|
Modification of bidentate bis(N-heterocyclic imine) ligands for low-valent main group complexes. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Stieglitz L, Henschel D, Pehl T, Rieger B. In Situ Activation: Chances and Limitations to Form Ultrahigh Molecular Weight Syndiotactic Polypropylene with Metallocene Dichlorides. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lucas Stieglitz
- Wacker-Lehrstuhl für Makromolekulare Chemie, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Daniel Henschel
- Wacker-Lehrstuhl für Makromolekulare Chemie, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Thomas Pehl
- Wacker-Lehrstuhl für Makromolekulare Chemie, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Bernhard Rieger
- Wacker-Lehrstuhl für Makromolekulare Chemie, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| |
Collapse
|
25
|
Linden MH, Linden HB, Gross JH. Negative-ion field desorption revitalized by using liquid injection field desorption/ionization-mass spectrometry on recent instrumentation. Anal Bioanal Chem 2021; 413:6845-6855. [PMID: 34494122 PMCID: PMC8551092 DOI: 10.1007/s00216-021-03641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022]
Abstract
Field ionization (FI), field desorption (FD), and liquid injection field desorption/ionization (LIFDI) provide soft positive ionization of gaseous (FI) or condensed phase analytes (FD and LIFDI). In contrast to the well-established positive-ion mode, negative-ion FI or FD have remained rare exceptions. LIFDI provides sample deposition under inert conditions, i.e., the exclusion of atmospheric oxygen and water. Thus, negative-ion LIFDI could potentially be applied to highly sensitive anionic compounds like catalytically active transition metal complexes. This work explores the potential of negative-ion mode using modern mass spectrometers in combination with an LIFDI source and presents first results of the application of negative-ion LIFDI-MS. Experiments were performed on two orthogonal-acceleration time-of-flight (oaTOF) instruments, a JEOL AccuTOF GCx and a Waters Micromass Q-TOF Premier equipped with LIFDI sources from Linden CMS. The examples presented include four ionic liquids (ILs), i.e., N-butyl-3-methylpyridinium dicyanamide, 1-butyl-3-methylimidazolium tricyanomethide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate), 3-(trifluoromethyl)-phenol, dichloromethane, iodine, polyethylene glycol diacid, perfluorononanoic acid, anionic surfactants, a tetraphosphazene silanol-silanolate, and two bis(catecholato)silanes. Volatile samples were delivered as vapors via the sample transfer capillary of the LIFDI probe or via a reservoir inlet. Condensed phase samples were applied to the emitter as dilute solutions via the sample transfer capillary. The compounds either yielded ions corresponding to their intact anions, A-, or the [M-H]- species formed upon deprotonation. This study describes the instrumental setups and the operational parameters for robust operation along with a discussion of the negative-ion LIFDI spectra of a variety of compounds.
Collapse
Affiliation(s)
| | | | - Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
| |
Collapse
|