Kulczyk S, Kowalczyk A, Cyniak JS, Koszytkowska-Stawińska M, Nowicka AM, Kasprzak A. Click Chemistry Derived Hexa-ferrocenylated 1,3,5-Triphenylbenzene for the Detection of Divalent Transition Metal Cations.
ACS OMEGA 2024;
9:38658-38667. [PMID:
39310204 PMCID:
PMC11411552 DOI:
10.1021/acsomega.4c04300]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024]
Abstract
The 1,3-dipolar cycloaddition reaction (click chemistry approach) was employed to create a hexa-ferrocenylated 1,3,5-triphenylbenzene derivative. Leveraging the presence of metal-chelating sites associated with 1,2,3-triazole moieties and 1,4-dinitrogen systems (ethylenediamine-like), as well as tridentate chelating sites (1,4,7-trinitrogen, diethylene triamine-like) systems, the application of this molecule as a chemosensor for divalent transition metal cations was investigated. The interactions were probed voltammetrically and spectrofluorimetrically against seven selected cations: iron(II) (Fe2+), cobalt(II) (Co2+), nickel(II) (Ni2+), copper(II) (Cu2+), zinc(II) (Zn2+), cadmium(II) (Cd2+), and manganese(II) (Mn2+). Electrochemical assays revealed good detection properties, with very low limits of detection (LOD), for Co2+, Cu2+, and Cd2+ in aqueous solution (0.03-0.09 μM). Emission spectroscopy experiments demonstrated that the title compound exhibited versatile detection properties in solution, specifically turn-off fluorescence behavior upon the addition of each tested transition metal cation. The systems were characterized by satisfactory Stern-Volmer constant values (105-106 M-1) and low LOD, especially for Zn2+ and Co2+ (at the nanomolar concentration level).
Collapse