1
|
Li G, Stefanczyk O, Kumar K, Guérin L, Okuzono K, Tran K, Seydi Kilic M, Nakabayashi K, Imoto K, Namai A, Nakamura Y, Ranjan Maity S, Renz F, Chastanet G, Ohkoshi SI. Near-Infrared Light-Induced Spin-State Switching Based on Fe(II)-Hg(II) Spin-Crossover Network. Angew Chem Int Ed Engl 2024:e202423095. [PMID: 39659214 DOI: 10.1002/anie.202423095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
The development of molecular switches with tunable properties has garnered considerable interest over several decades. A novel spin-crossover (SCO) material based on iron(II) complexes incorporating 4-acetylpyridine (4-acpy) and [Hg(SCN)4]2- anions was synthesized and formulated as [Fe(4-acpy)2][Hg(μ-SCN)4] (1). Compound 1 is crystallized in a three-dimensional network in the non-centrosymmetric orthorhombic space group Pna21 with two octahedral [Fe(4-acpy)2(NCS)4] entities featuring two distinct Fe centers (Fe1 and Fe2). Crystallographic, magnetic, and Mössbauer measurements reveal an incomplete SCO exclusively at Fe2, with transition temperature T1/2≈102 K. Photomagnetic studies conducted at 10 K with lasers ranging from 405 to 1310 nm evidence light-induced excited spin-state trapping (LIESST) and reverse-LIESST effects, with a unique near-infrared-responsive LIESST phenomenon at 1064 and 1310 nm. Advanced photocrystallographic studies at 40 K provide precise structural evidence for these metastable states. The optical and vibrational properties consistently corroborate with magnetic and photomagnetic studies. Additionally, temperature- and light-dependent terahertz (THz) absorptions are associated with phonon vibrations around Fe2 centers, through SCO behavior, as supported by ab initio calculation. The Fe(II)-Hg(II) systems can be promising benchmarks for exploring synergistic switching effects in structural, magnetic, and spectroscopic properties.
Collapse
Affiliation(s)
- Guanping Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
| | - Olaf Stefanczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kunal Kumar
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Laurent Guérin
- Université de Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000, Rennes, France
- DYNACOM (Dynamical Control of Materials)-IRL2015, CNRS, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kosei Okuzono
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kevin Tran
- Institute of Inorganic Chemistry, Leibniz Universität Hannover, Callinstraße 9, 30167, Hannover, Germany
- Hannover School for Nanotechnology, Laboratorium für Nano-und Quantenengineering (LNQE), Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany
| | - Maximilian Seydi Kilic
- Institute of Inorganic Chemistry, Leibniz Universität Hannover, Callinstraße 9, 30167, Hannover, Germany
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenta Imoto
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Asuka Namai
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuiga Nakamura
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Hyogo, 679-5198, Japan
| | - Sumit Ranjan Maity
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Hyogo, 679-5198, Japan
| | - Franz Renz
- Institute of Inorganic Chemistry, Leibniz Universität Hannover, Callinstraße 9, 30167, Hannover, Germany
- Hannover School for Nanotechnology, Laboratorium für Nano-und Quantenengineering (LNQE), Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany
| | | | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- DYNACOM (Dynamical Control of Materials)-IRL2015, CNRS, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Maliuzhenko V, Weselski M, Gregoliński J, Książek M, Kusz J, Bronisz R. Spin Crossover Quenching by "Racemization" in a Family of trans-1,2-Di(tetrazol-1-yl)cyclopentane-Based Fe(II) 1D Coordination Polymers. Inorg Chem 2024; 63:17762-17773. [PMID: 39265981 PMCID: PMC11423399 DOI: 10.1021/acs.inorgchem.4c02671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Optically pure (RR)- and racemic (RR/SS)-trans-1,2-di(tetrazol-1-yl)cyclopentane were synthesized and used to prepare homo- and heterochiral Fe(II) coordination compounds. [Fe((RR/SS)-C7H10N8)2(CH3CN)2](BF4)2 (1A), [Fe((RR/SS)-C7H10N8)2(C2H5CN)2](BF4)2 (2A), [Fe((RR)-C7H10N8)2(CH3CN)2](BF4)2·2CH3CN (1B·solv), and [Fe((RR)-C7H10N8)2(C2H5CN)2](BF4)2 (2B) form a family of one-dimensional coordination polymers. Fe(II) cations in these complexes are characterized by a heteroleptic coordination environment: the neighboring metal centers are bridged by two 1,2-di(tetrazol-1-yl)cyclopentane molecules, while the nitrile molecules (acetonitrile or propionitrile, respectively) occupy the axial positions. Independently of the kind of nitrile coligands, an ability to thermally induce spin crossover (SCO) is governed by chirality. 1B·solv and 2B exhibit abrupt and complete SCO occurring at T1/2 = 144 K and T1/2 = 228 K, respectively. Desolvated form, 1B (of the same stoichiometry as 2B), also exhibits SCO (T1/2 = 215 K). In contrast, an exchange within the polymeric chain of half of the RR molecules with the SS enantiomeric form results in formation of 1A and 2A, which remain in stable high-spin (HS) form down to 10 K. It has been shown that moving from a homochiral to a heterochiral system changes the structure of the polymeric unit (while maintaining the same polymer dimensionality and bridging fashion) that leads to the deep reorganization of the further coordination spheres, including the anion network.
Collapse
Affiliation(s)
- Vladyslav Maliuzhenko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Janusz Gregoliński
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Maria Książek
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
3
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Jędrzejowska K, Kobylarczyk J, Tabor D, Srebro-Hooper M, Kumar K, Li G, Stefanczyk O, Muzioł TM, Dziedzic-Kocurek K, Ohkoshi SI, Podgajny R. Nonlinear and Emissive {[M III(CN) 6] 3-···Polyresorcinol} (M = Fe, Co, Cr) Cocrystals Exhibiting an Ultralow Frequency Raman Response. Inorg Chem 2024; 63:1803-1815. [PMID: 38109502 PMCID: PMC10828991 DOI: 10.1021/acs.inorgchem.3c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023]
Abstract
Optically active functional noncentrosymmetric architectures might be achieved through the combination of molecules with inscribed optical responses and species of dedicated tectonic character. Herein, we present the new series of noncentrosymmetric cocrystal salt solvates (PPh4)3[M(CN)6](L)n·msolv (M = Cr(III), Fe(III), Co(III); L = polyresorcinol coformers, multiple hydrogen bond donors: 3,3',5,5'-tetrahydroxy-1,19-biphenyl, DiR, n = 2, or 5'-(3,5-dihydroxyphenyl)-3,3″,5,5″-tetrahydroxy-1,19:3',1″-terphenyl, TriRB, n = 1) denoted as MDiR and MTriRB, respectively. The hydrogen-bonded subnetworks {[M(CN)6]3-;Ln}∞ of dmp, neb, or dia topology are formed through structural matching between building blocks within supramolecular cis-bis(chelate)-like {[M(CN)6]3-;(H2L)2(HL)2} or tris(chelate)-like {[M(CN)6]3-;(H2L)3} fragments. The quantum-chemical analysis demonstrates the mixed electrostatic and covalent character of these interactions, with their strength clearly enhanced due to the negative charge of the hydrogen bond acceptor metal complex. The corresponding interaction energy is also dependent on the geometry of the contact and size matching of its components, rotational degree of freedom and extent of the π-electron system of the coformer, and overall fit to the molecular surroundings. Symmetry of the crystal lattices is correlated with the local symmetry of coformers and {complex;(coformer)n} hydrogen-bonded motifs characterized by the absence of the inversion center and mirror plane. All compounds reveal second-harmonic generation activity and photoluminescence diversified by individual UV-vis spectral characteristics of the components, and interesting low-frequency Raman scattering spectra within the subterahertz spectroscopic domain. Vibrational (infrared/Raman), UV-vis electronic absorption (experimental and calculated), and 57Fe Mössbauer spectra together with electrospray ionization mass spectrometry (ESI-MS) data are provided for the complete description of our systems.
Collapse
Affiliation(s)
- Katarzyna Jędrzejowska
- Faculty of
Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University in Kraków, Prof. St. Łojasiewicza 11, 30-348 Kraków, Poland
| | | | - Dominika Tabor
- Faculty of
Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| | - Monika Srebro-Hooper
- Faculty of
Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| | - Kunal Kumar
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Guanping Li
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Olaf Stefanczyk
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadeusz M. Muzioł
- Faculty of
Chemistry, Nicolaus Copernicus University
in Toruń, Gagarina
7, 87-100 Toruń, Poland
| | - Katarzyna Dziedzic-Kocurek
- Marian Smoluchowski
Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Robert Podgajny
- Faculty of
Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
5
|
Du X, Zhang Z, Gao C, Li F, Li XL. Two pairs of chiral Yb III enantiomers presenting distinct NIR luminescence and circularly polarized luminescence performances with giant differences in second-harmonic generation responses. Dalton Trans 2023; 52:17758-17766. [PMID: 37974451 DOI: 10.1039/d3dt03324d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
By introducing enantiomerically pure mono-bidentate N-donor ligands (LR/LS) into Yb(btfa)3(H2O)2 and Yb(dbm)3(H2O), respectively, two pairs of chiral YbIII enantiomers, namely Yb(btfa)3LR/Yb(btfa)3LS (D-1/L-1) and [Yb(dbm)3LR]·[Yb(dbm)3(C2H5OH)]/[Yb(dbm)3LS]·[Yb(dbm)3(C2H5OH)] (D-2/L-2) were isolated, where btfa- = 3-benzoyl-1,1,1-trifluoroacetonate, dbm- = dibenzoylmethanate, and LR/LS = (-)/(+)-4,5-pinenepyridyl-2-pyrazine. D-1/L-1 possess mononuclear structures in which the YbIII ions are eight-coordinated, while D-2/L-2 show cocrystal structures containing Yb(dbm)3(LR/LS) and Yb(dbm)3(C2H5OH) moieties in which the two YbIII ions are eight and seven-coordinated, respectively. They not only feature different molecular structures but also present distinct linear and nonlinear optical performances. Chiral mononuclear D-1 has better near infrared photo-luminescence (NIR-PL) and circularly polarized luminescence (CPL) performances than chiral cocrystal D-2. More remarkably, D-1/L-1 show large second-harmonic generation (SHG) responses (up to 1.25/1.28 × KDP) 18/16 times those of D-2/L-2 (0.07/0.08 × KDP). In addition, D-2/L-2 represent the first examples of lanthanide cocrystal complexes with NIR-PL, NIR-CPL and SHG properties.
Collapse
Affiliation(s)
- Xiaodi Du
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, PR China.
| | - Zhiqiang Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| | - Congli Gao
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| | - Fengcai Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| | - Xi-Li Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| |
Collapse
|
6
|
Liberka M, Zychowicz M, Hooper J, Nakabayashi K, Ohkoshi SI, Chorazy S. Synchronous Switching of Dielectric Constant and Photoluminescence in Cyanidonitridorhenate-Based Crystals. Angew Chem Int Ed Engl 2023; 62:e202308284. [PMID: 37615930 DOI: 10.1002/anie.202308284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/05/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Switching of multiple physical properties by external stimuli in dynamic materials enables applications in, e.g., smart sensors, biomedical tools, as well as data-storage devices. Among stimuli-responsive materials, inorganic-organic molecular hybrids exhibiting thermal order-disorder phase transitions were tested as promising molecular switches of electrical characteristics, including dielectric constant. We aimed at broadening the multifunctional potential of such hybrid materials towards the switching of not only electrical but also other physical properties, e.g., light emission. We report two ionic salts based on luminescent tetracyanidonitridorhenate(V) anions bearing two different diamine ligands, 1,2-diaminoethane (1) and 1,3-diaminopropane (2), both crystallizing with polar N-methyl-dabconium cations. They exhibit an order-disorder phase transition related to the heating-induced turning-on of the rotation of polar cations. This leads to a unique synchronous switching of the dielectric constant as well as metal-complex-centered photoluminescence, as demonstrated by changes in, e.g., emission lifetime. The roles of organic cations, non-trivial Re(V) complexes, and their interaction in achieving the coupled thermal switching of electrical and optical properties are discussed utilizing experimental and theoretical approaches.
Collapse
Affiliation(s)
- Michal Liberka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Mikolaj Zychowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - James Hooper
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
7
|
Du X, Gao C, Zhang Z, Su B, Li XL. A pair of ionic 1D Cu(II) chain enantiomers simultaneously displaying large second- and third-harmonic generation responses. Dalton Trans 2023; 52:13229-13234. [PMID: 37665274 DOI: 10.1039/d3dt01923c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
By employing enantiomerically pure mono-bidentate N-donors (LR/LS) as chiral bridging ligands to react with Cu(ClO4)2(H2O)6 in CH3CN-DMF mixed solvent, respectively, a pair of ionic one-dimensional (1D) Cu(II) chain enantiomers formulated as {[CuLR(CH3CN)(DMF)H2O](ClO4)2}n/{[CuLS(CH3CN)(DMF)H2O](ClO4)2}n (D-1/L-1) were isolated and structurally characterized, where LR/LS = (-)/(+)-4,5-pinenepyridyl-2-pyrazine. They crystallize in the noncentrosymmetric (NCS) P212121 space group of an orthorhombic system due to the introduction of chiral LR/LS, and the ClO4- groups as counteranions reside in crystal lattices, thus leading to charge separation with large dipole moments in their molecular structures. Based on crystal samples, investigation on their nonlinear optical (NLO) behaviors showed that D-1 and L-1 display simultaneously much larger second- and third-harmonic generation (SHG and THG) responses than their analogues based on the same chiral N-donors (LR/LS) and Cu(NO3)2(H2O)3 with NO3- acting as the coordination group to bind Cu(II) ions. The SHG intensities of D-1/L-1 are 0.62/0.60 × KDP (KH2PO4), and THG intensities of D-1/L-1 are 238/228 × α-SiO2. Our finding indicates that coordination polymers (CPs) with charge separation and NCS structures, i.e., ionic CPs with NCS arrangements are the ideal NLO crystalline materials for the simultaneous observation of large SHG and THG responses, thus providing a new approach to obtain NLO-active CP crystalline materials with high-performance SHG and THG responses.
Collapse
Affiliation(s)
- Xiaodi Du
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, PR China. >
| | - Congli Gao
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| | - Zhiqiang Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| | - Bing Su
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| | - Xi-Li Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| |
Collapse
|
8
|
Ou G, Wang Q, Tan Y, Zhou Q. Synthesis, Structures, and Magnetism of Four One-Dimensional Complexes Using [Ni(CN) 4] 2- and Macrocyclic Metal Complexes. Molecules 2023; 28:molecules28114529. [PMID: 37299003 DOI: 10.3390/molecules28114529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Four one-dimensional complexes, denoted as [NiL1][Ni(CN)4] (1), [CuL1][Ni(CN)4] (2), [NiL2][Ni(CN)4]·2H2O (3), and [CuL2][Ni(CN)4]·2H2O (4) (L1 = 1,8-dimethyl-1,3,6,8,10,13-hexaaza-cyclotetradecane; L2 = 1,8-dipropyl-1,3,6,8,10,13-hexaazacyclotetradecane) were synthesized by reacting nickel/copper macrocyclic complexes with K2[Ni(CN)4]. Subsequently, the synthesized complexes were characterized using elemental analysis, infrared spectroscopy analysis, thermogravimetric analysis, and X-ray powder diffraction. Single-crystal structure analysis revealed that the Ni(II)/Cu(II) atoms were coordinated by two nitrogen atoms from [Ni(CN)4]2- with four nitrogen atoms from a macrocyclic ligand, forming a six-coordinated octahedral coordination geometry. Nickel/copper macrocyclic complexes were bridged by [Ni(CN)4]2- to construct one-dimensional chain structures in 1-4. The characterization results showed that the four complexes obeyed the Curie-Weiss law with a weak antiferromagnetic exchange coupling.
Collapse
Affiliation(s)
- Guangchuan Ou
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Qiong Wang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Yingzhi Tan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Qiang Zhou
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| |
Collapse
|
9
|
Wen W, Liu Q, Zhang S, Yao N, Oshio H, Meng Y, Liu T. Spin‐Crossover Tuned Rotation of Pyrazolyl Rings in a 2D Iron(II) Complex towards Synergetic Magnetic and Dielectric Transitions. Angew Chem Int Ed Engl 2022; 61:e202208886. [DOI: 10.1002/anie.202208886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Wen Wen
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
- College of Chemistry & Chemical Engineering Yantai University 30 Qingquan Rd. 264005 Yantai China
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Shi‐Hui Zhang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Nian‐Tao Yao
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Hiroki Oshio
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Yin‐Shan Meng
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Rd. 116024 Dalian China
| |
Collapse
|
10
|
Wen W, Liu Q, Zhang SH, Yao NT, Oshio H, Meng YS, Liu T. Spin‐Crossover Tuned Rotation of Pyrazolyl Rings in a 2D Iron(II) Complex towards Synergetic Magnetic and Dielectric Transitions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wen Wen
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2 Linggong Rd. 116024 Dalian CHINA
| | - Qiang Liu
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2 Linggong Rd. 116024 Dalian CHINA
| | - Shi-Hui Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2 Linggong Rd. 116024 Dalian CHINA
| | - Nian-Tao Yao
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2 Linggong Rd. 116024 Dalian CHINA
| | - Hiroki Oshio
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2 Linggong Rd. 116024 Dalian CHINA
| | - Yin-Shan Meng
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2 Linggong Rd., Dalian, 116024, China. 116024 Dalian CHINA
| | - Tao Liu
- Dalian University of Technology State Key Laboratory of Fine Chemicals 2 Linggong Rd. 116024 Dalian CHINA
| |
Collapse
|
11
|
Kühne IA, Ozarowski A, Sultan A, Esien K, Carter AB, Wix P, Casey A, Heerah-Booluck M, Keene TD, Müller-Bunz H, Felton S, Hill S, Morgan GG. Homochiral Mn 3+ Spin-Crossover Complexes: A Structural and Spectroscopic Study. Inorg Chem 2022; 61:3458-3471. [PMID: 35175771 PMCID: PMC8889584 DOI: 10.1021/acs.inorgchem.1c03379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Structural, magnetic,
and spectroscopic data on a Mn3+ spin-crossover complex
with Schiff base ligand 4-OMe-Sal2323, isolated in crystal
lattices with five different counteranions,
are reported. Complexes of [Mn(4-OMe-Sal2323)]X where X
= ClO4– (1), BF4– (2), NO3– (3), Br– (4), and I– (5) crystallize isotypically in the chiral
orthorhombic space group P21212 with a range of spin state preferences for the [Mn(4-OMe-Sal2323)]+ complex cation over the temperature range
5–300 K. Complexes 1 and 2 are high-spin,
complex 4 undergoes a gradual and complete thermal spin
crossover, while complexes 3 and 5 show
stepped crossovers with different ratios of spin triplet and quintet
forms in the intermediate temperature range. High-field electron paramagnetic
resonance was used to measure the zero-field splitting parameters
associated with the spin triplet and quintet states at temperatures
below 10 K for complexes 4 and 2 with respective
values: DS=1 = +23.38(1) cm–1, ES=1 = +2.79(1) cm–1,
and DS=2 =
+6.9(3) cm–1, with a distribution of E parameters for the S = 2 state. Solid-state circular
dichroism (CD) spectra on high-spin complex 1 at room
temperature reveal a 2:1 ratio of enantiomers in the chiral conglomerate,
and solution CD measurements on the same sample in methanol show that
it is stable toward racemization. Solid-state UV–vis absorption
spectra on high-spin complex 1 and mixed S = 1/S = 2 sample 5 reveal different
intensities at higher energies, in line with the different electronic
composition. The statistical prevalence of homochiral crystallization
of [Mn(4-OMe-Sal2323)]+ in five lattices with
different achiral counterions suggests that the chirality may be directed
by the 4-OMe-Sal2323 ligand. Zero-field
splitting parameters of the spin triplet and
quintet forms of a spin-crossover Mn3+ complex stabilized
in lattices with different counterions are measured by high-field
electron paramagnetic resonance at different frequencies. The homochiral
crystallization of the enantiopure Δ or Λ forms of the
chelate complex, despite the use of achiral anions, is attributed
to the steric influence of the ligand substituent.
Collapse
Affiliation(s)
- Irina A Kühne
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland.,FZU - Institute of Physics - Czech Academy of Sciences, Na Slovance 1999/2, Prague 8 182 21, Czech Republic
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Aizuddin Sultan
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Kane Esien
- School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Anthony B Carter
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Paul Wix
- School of Chemistry & CRANN Institute & AMBER Centre, Trinity College Dublin, University of Dublin, College Green, Dublin 2, Ireland
| | - Aoife Casey
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | | | - Tony D Keene
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Helge Müller-Bunz
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Solveig Felton
- School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.,Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Grace G Morgan
- School of Chemistry, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| |
Collapse
|