1
|
Mphahlele MRR, Mosai AK, Tutu H, Kotzé IA. Advancements in sustainable platinum and palladium recovery: unveiling superior adsorption efficiency and selectivity with a novel silica-anchored acylthiourea adsorbent. RSC Adv 2024; 14:7507-7516. [PMID: 38440278 PMCID: PMC10910266 DOI: 10.1039/d3ra08169a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
This study addresses the pressing issue of depleting natural resources of platinum group metals (PGMs), driven by their widespread use in modern applications and increasing demand for renewable energy technologies. With conventional sources dwindling, the search for economically viable recovery methods from alternative sources has become crucial. Our focus was on innovating efficient recovery strategies, leading to the development of two novel silica-anchored adsorbents: DTMSP-BT-SG, a highly efficient acylthiourea adsorbent, and BTMSPA-SG, a silica-anchored amine adsorbent. We conducted comprehensive experiments under PGM mining wastewater conditions, varying parameters such as adsorbent mass, pH, concentration, contact time, competing ions, and volume. DTMSP-BT-SG demonstrated exceptional performance, achieving maximum adsorption efficiencies of >98% for Pt and >99% for Pd at pH 2, 0.5 g L-1 dosage, and 5 mg L-1 concentration. In contrast, under the same conditions, BTMSPA-SG recovered <56% and <89% of Pt and Pd, respectively. The experimental data for both adsorbents were analysed using Langmuir and Freundlich isotherm models for concentration and pseudo-first and second-order models for contact time. The Langmuir model best described the adsorption data, indicating homogenous monolayer adsorption of Pt and Pd. The kinetic models suggested a pseudo-second-order process, implying chemisorption. Furthermore, in the presence of competing ions and other PGMs, DTMSP-BT-SG exhibited significantly higher recovery rates for Pt and Pd compared to BTMSPA-SG. Overall, DTMSP-BT-SG emerged as a more selective and efficient adsorbent across varied parameters. Its exceptional adsorption efficiency, coupled with cost-effectiveness, positions it as a promising and competitive recovery agent for extracting PGMs from mining wastewaters.
Collapse
Affiliation(s)
- Malehlogonolo R R Mphahlele
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Private Bag X3, WITS Johannesburg 2050 South Africa
| | - Alseno K Mosai
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria 0002 South Africa
| | - Hlanganani Tutu
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Private Bag X3, WITS Johannesburg 2050 South Africa
| | - Izak A Kotzé
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Private Bag X3, WITS Johannesburg 2050 South Africa
| |
Collapse
|
2
|
Caligiuri R, Massai L, Geri A, Ricciardi L, Godbert N, Facchetti G, Lupo MG, Rossi I, Coffetti G, Moraschi M, Sicilia E, Vigna V, Messori L, Ferri N, Mazzone G, Aiello I, Rimoldi I. Cytotoxic Pt(II) complexes containing alizarin: a selective carrier for DNA metalation. Dalton Trans 2024; 53:2602-2618. [PMID: 38223973 DOI: 10.1039/d3dt03889k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Many efforts have been made in the last few decades to selectively transport antitumor agents to their potential target sites with the aim to improve efficacy and selectivity. Indeed, this aspect could greatly improve the beneficial effects of a specific anticancer agent especially in the case of orphan tumors like the triple negative breast cancer. A possible strategy relies on utilizing a protective leaving group like alizarin as the Pt(II) ligand to reduce the deactivation processes of the pharmacophore enacted by Pt resistant cancer cells. In this study a new series of neutral mixed-ligand Pt(II) complexes bearing alizarin and a variety of diamine ligands were synthesized and spectroscopically characterized by FT-IR, NMR and UV-Vis analyses. Three Pt(II) compounds, i.e., 2b, 6b and 7b, emerging as different both in terms of structural properties and cytotoxic effects (not effective, 10.49 ± 1.21 μM and 24.5 ± 1.5 μM, respectively), were chosen for a deeper investigation of the ability of alizarin to work as a selective carrier. The study comprises the in vitro cytotoxicity evaluation against triple negative breast cancer cell lines and ESI-MS interaction studies relative to the reaction of the selected Pt(II) complexes with model proteins and DNA fragments, mimicking potential biological targets. The results allow us to suggest the use of complex 6b as a prospective anticancer agent worthy of further investigations.
Collapse
Affiliation(s)
- Rossella Caligiuri
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Lara Massai
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Andrea Geri
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Loredana Ricciardi
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy
| | - Nicolas Godbert
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
- LPM-Laboratorio Preparazione Materiali, STAR-Lab, Università della Calabria, Via Tito Flavio, 87036 Rende (CS), Italy
| | - Giorgio Facchetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| | | | - Ilaria Rossi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Giulia Coffetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| | - Martina Moraschi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Vincenzo Vigna
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Luigi Messori
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Iolinda Aiello
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
- LPM-Laboratorio Preparazione Materiali, STAR-Lab, Università della Calabria, Via Tito Flavio, 87036 Rende (CS), Italy
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy
| | - Isabella Rimoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| |
Collapse
|
3
|
Liang CJ, Wu RC, Huang XQ, Qin QP, Liang H, Tan MX. Synthesis and anticancer mechanisms of four novel platinum(II) 4'-substituted-2,2':6',2''-terpyridine complexes. Dalton Trans 2024; 53:2143-2152. [PMID: 38189098 DOI: 10.1039/d3dt03197g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mitophagy, a selective autophagic process, has emerged as a pathway involved in degrading dysfunctional mitochondria. Herein, new platinum(II)-based chemotherapeutics with mitophagy-targeting properties are proposed. Four novel binuclear anticancer Pt(II) complexes with 4'-substituted-2,2':6',2''-terpyridine derivatives (tpy1-tpy4), i.e., [Pt2(tpy1)(DMSO)2Cl4]·CH3OH (tpy1Pt), [Pt(tpy2)Cl][Pt(DMSO)Cl3]·CH3COCH3 (tpy2Pt), [Pt(tpy3)Cl][Pt(DMSO)Cl3] (tpy3Pt), and [Pt(tpy4)Cl]Cl·CH3OH (tpy4Pt), were designed and prepared. Moreover, their potential antitumor mechanism was studied. Tpy1Pt-tpy4Pt exhibited more selective cytotoxicity against cisplatin-resistant SK-OV-3/DDP (SKO3cisR) cancer cells compared with those against ovarian SK-OV-3 (SKO3) cancer cells and normal HL-7702 liver (H702) cells. This selective cytotoxicity of Tpy1Pt-tpy4Pt was better than that of its ligands (i.e., tpy1-tpy4), the clinical drug cisplatin, and cis-Pt(DMSO)2Cl2. The results of various experiments indicated that tpy1Pt and tpy2Pt kill SKO3cisR cancer cells via a mitophagy pathway, which involves the disruption of the mitophagy-related protein expression, dissipation of the mitochondrial membrane potential, elevation of the [Ca2+] and reactive oxygen species levels, promotion of mitochondrial DNA damage, and reduction in the adenosine triphosphate and mitochondrial respiratory chain levels. Furthermore, in vivo experiments indicated that the dinuclear anticancer Pt(II) coordination compound (tpy1Pt) has remarkable therapeutic efficiency (ca. 52.4%) and almost no toxicity. Therefore, the new 4'-substituted-2,2':6',2''-terpyridine Pt(II) coordination compound (tpy1Pt) is a potential candidate for next-generation mitophagy-targeting dinuclear Pt(II)-based anticancer drugs.
Collapse
Affiliation(s)
- Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Run-Chun Wu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Xiao-Qiong Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| |
Collapse
|
4
|
Cai DH, Liang BF, Chen BH, Liu QY, Pan ZY, Le XY, He L. A novel water-soluble Cu(II) gluconate complex inhibits cancer cell growth by triggering apoptosis and ferroptosis related mechanisms. J Inorg Biochem 2023; 246:112299. [PMID: 37354603 DOI: 10.1016/j.jinorgbio.2023.112299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Metal copper complexes have attracted extensive attention as potential alternatives to platinum-based anticancer drugs due to their possible different modes of action. Herein, a new copper(II) gluconate complex, namely [Cu(DPQ)(Gluc)]·2H2O (CuGluc, DPQ = pyrazino[2,3-f][1,10]phenanthroline), with good water-solubility and high anticancer activity was synthesized by using D-gluconic acid (Gluc-2H) as an auxiliary ligand. The complex was well characterized by single-crystal X-ray diffraction analysis, elemental analysis, molar conductivity, and Fourier transform infrared spectroscopy (FTIR). The DNA-binding experiments revealed that CuGluc was bound to DNA by intercalation with end-stacking binding. CuGluc could oxidatively cleave DNA, in which 1O2 and H2O2 were involved. In addition, CuGluc was bound to the IIA subdomain of human serum albumin (HSA) through hydrophobic interaction and hydrogen bonding, showing a good affinity for HSA. The complex showed superior anticancer activity toward several cancer cells than cisplatin in vitro. Further studies indicated that CuGluc caused apoptotic cell death in human liver cancer (HepG2) cells through elevated intracellular reactive oxygen species (ROS) levels, mitochondrial dysfunction, cell cycle arrest, and caspase activation. Interestingly, CuGluc also triggered the ferroptosis mechanism through lipid peroxide accumulation and inhibition of glutathione peroxidase 4 (GPX4) activity. More importantly, CuGluc significantly inhibited tumor growth in vivo, which may benefit from the combined effects of apoptosis and ferroptosis. This work provides a promising strategy to develop highly effective antitumor copper complexes by coordinating with the glucose metabolite D-gluconic acid and exploiting the synergistic effects of apoptosis and ferroptosis mechanisms.
Collapse
Affiliation(s)
- Dai-Hong Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Bin-Fa Liang
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Bai-Hua Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Qi-Yan Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zheng-Yin Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Xue-Yi Le
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Hanson S, Dharan A, P. V. J, Pal S, Nair BG, Kar R, Mishra N. Paraptosis: a unique cell death mode for targeting cancer. Front Pharmacol 2023; 14:1159409. [PMID: 37397502 PMCID: PMC10308048 DOI: 10.3389/fphar.2023.1159409] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Programmed cell death (PCD) is the universal process that maintains cellular homeostasis and regulates all living systems' development, health and disease. Out of all, apoptosis is one of the major PCDs that was found to play a crucial role in many disease conditions, including cancer. The cancer cells acquire the ability to escape apoptotic cell death, thereby increasing their resistance towards current therapies. This issue has led to the need to search for alternate forms of programmed cell death mechanisms. Paraptosis is an alternative cell death pathway characterized by vacuolation and damage to the endoplasmic reticulum and mitochondria. Many natural compounds and metallic complexes have been reported to induce paraptosis in cancer cell lines. Since the morphological and biochemical features of paraptosis are much different from apoptosis and other alternate PCDs, it is crucial to understand the different modulators governing it. In this review, we have highlighted the factors that trigger paraptosis and the role of specific modulators in mediating this alternative cell death pathway. Recent findings include the role of paraptosis in inducing anti-tumour T-cell immunity and other immunogenic responses against cancer. A significant role played by paraptosis in cancer has also scaled its importance in knowing its mechanism. The study of paraptosis in xenograft mice, zebrafish model, 3D cultures, and novel paraptosis-based prognostic model for low-grade glioma patients have led to the broad aspect and its potential involvement in the field of cancer therapy. The co-occurrence of different modes of cell death with photodynamic therapy and other combinatorial treatments in the tumour microenvironment are also summarized here. Finally, the growth, challenges, and future perspectives of paraptosis research in cancer are discussed in this review. Understanding this unique PCD pathway would help to develop potential therapy and combat chemo-resistance in various cancer.
Collapse
Affiliation(s)
- Sweata Hanson
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Aiswarya Dharan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Jinsha P. V.
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Rekha Kar
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, United States
| | - Nandita Mishra
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
6
|
Yang Y, Du LQ, Huang Y, Liang CJ, Qin QP, Liang H. Platinum(II) 5-substituted-8-hydroxyquinoline coordination compounds induces mitophagy-mediated apoptosis in A549/DDP cancer cells. J Inorg Biochem 2023; 241:112152. [PMID: 36736244 DOI: 10.1016/j.jinorgbio.2023.112152] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
For the first time, two new mononuclear platinum(II) coordination compounds, [Pt(L1)(DMSO)Cl] (PtL1) and [Pt(L2)(DMSO)Cl] (PtL2) with the 5-(ethoxymethyl)-8-hydroxyquinoline hydrochloride (H-L1) and 5-bromo-8-hydroxyquinoline (H-L2) have been synthesized and characterized. The cytotoxic activity of PtL1 and PtL2 were screened in both healthy HL-7702 cell line and cancer cell lines, human lung adenocarcinoma A549 cancer cells and cisplatin-resistant lung adenocarcinoma A549/DDP cancer cells (A549R), and were compared to that of the H-L1, H-L2, H-L3 ligands and 8-hydroxyquinoline (H-L3) platinum(II) complex [Pt(L3)(DMSO)Cl] (PtL3). MTT results showed that PtL1 bearing one deprotonated L1 ligand against A549R was more potent by 8.8-48.6 fold than that of PtL2 and PtL3 complexes but was more selective toward healthy HL-7702 cells. In addition, PtL1 and PtL3 overcomes tumour drug resistance by significantly inducing mitophagy and causing the change of the related proteins expression, which leads to cell apoptosis. Moreover, the inhibitory effect of PtL1 on A549 xenograft tumour was 68.2%, which was much higher than that of cisplatin (cisPt, ca. 50.0%), without significantly changing nude mice weight in comparison with the untreated group. This study helps to explore the potential of the platinum(II) 5-substituted-8-hydroxyquinoline coordination compounds for the new Pt-resistant cancer therapy.
Collapse
Affiliation(s)
- Yan Yang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yan Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|