1
|
Miled MB, Fradin M, Benbakoura N, Mazière L, Rousseau J, Bouzid A, Carles P, Iwamoto Y, Masson O, Habrioux A, Bernard S. Encapsulating Nickel-Iron Alloy Nanoparticles in a Polysilazane-Derived Microporous Si-C-O-N-Based Support to Stimulate Superior OER Activity. CHEMSUSCHEM 2024; 17:e202400561. [PMID: 39110122 DOI: 10.1002/cssc.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Indexed: 12/12/2024]
Abstract
The in situ confinement of nickel (Ni)-iron (Fe) nanoparticles (NPs) in a polymer-derived microporous silicon carboxynitride (Si-C-O-N)-based support is investigated to stimulate superior oxygen evolution reaction (OER) activity in an alkaline media. Firstly, we consider a commercial polysilazane (PSZ) and Ni and Fe chlorides to be mixed in N,N-dimethylformamide (DMF) and deliver after overnight solvent reflux a series of Ni-Fe : organosilicon coordination polymers. The latter are then heat-treated at 500 °C in flowing argon to form the title compounds. By considering a Ni : Fe ratio of 1.5, face centred cubic (fcc) NixFey alloy NPs with a size of 15-30 nm are in situ generated in a porous Si-C-O-N-based matrix displaying a specific surface area (SSA) as high as 237 m2 ⋅ g-1. Hence, encapsulated NPs are rendered accessible to promote electrocatalytic water oxidation. An OER overpotential as low as 315 mV at 10 mA ⋅ cm-2 is measured. This high catalytic performance (considering that the metal mass loading is as low as 0.24 mg cm-2) is rather stable as observed after an activation step; thus, validating our synthesis approach. This is clearly attributed to both the strong NP-matrix interaction and the confinement effect of the matrix as highlighted through post mortem microscopy observations.
Collapse
Affiliation(s)
- Marwan Ben Miled
- CNRS, IRCER, UMR 7315, Univ. Limoges, 12 rue Atlantis, F-87068, Limoges
| | - Marina Fradin
- CNRS, IRCER, UMR 7315, Univ. Limoges, 12 rue Atlantis, F-87068, Limoges
| | - Nora Benbakoura
- CNRS, IC2MP, UMR 7285, Univ. Poitiers, 4 Rue Michel Brunet, F-86073
| | - Laetitia Mazière
- CNRS, IC2MP, UMR 7285, Univ. Poitiers, 4 Rue Michel Brunet, F-86073
| | - Julie Rousseau
- CNRS, IC2MP, UMR 7285, Univ. Poitiers, 4 Rue Michel Brunet, F-86073
| | - Assil Bouzid
- CNRS, IRCER, UMR 7315, Univ. Limoges, 12 rue Atlantis, F-87068, Limoges
| | - Pierre Carles
- CNRS, IRCER, UMR 7315, Univ. Limoges, 12 rue Atlantis, F-87068, Limoges
| | - Yuji Iwamoto
- Graduate School of Engineering, Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Aichi, Japan
| | - Olivier Masson
- CNRS, IRCER, UMR 7315, Univ. Limoges, 12 rue Atlantis, F-87068, Limoges
| | | | - Samuel Bernard
- CNRS, IRCER, UMR 7315, Univ. Limoges, 12 rue Atlantis, F-87068, Limoges
| |
Collapse
|
2
|
N Dhandapani H, Das C, Ghosh NN, Biswas G, Ramesh Babu B, Kundu S. Ceria-Graphene Oxide Nanocomposite for Electro-oxidation of Urea: An Experimental and Theoretical Investigation. Inorg Chem 2024; 63:16081-16094. [PMID: 39141009 DOI: 10.1021/acs.inorgchem.4c02747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
This study explores the potential of ceria-graphene oxide (CeO2-GO) nanocomposites as efficient electrocatalysts for urea electro-oxidation (UOR). This work combines experimental and theoretical investigations and characterization techniques confirm the successful formation of the CeO2 embedded on graphene oxide sheets. UOR activity was found to be dependent on both OH- and urea concentrations. The optimal UOR performance was achieved in a 0.1 M urea and 1.0 M KOH solution, as evidenced by the low Tafel slope of 60 mV/dec and high turnover frequency (TOF) of 1.690 s-1. DFT calculations revealed that the CeO2-GO nanocomposite exhibited strong urea adsorption due to its favorable bond lengths (Ce-O: 2.58 Å, O-H: 1.77 Å) and high adsorption energy (-1.05 eV). These findings revealed that the CeO2-GO nanocomposites are promising as efficient and durable electrocatalysts for urea conversion to valuable products like nitrogen and hydrogen gas, with potential applications in clean energy generation and ammonia synthesis.
Collapse
Affiliation(s)
- Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | | | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | - B Ramesh Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
3
|
Karmakar A, Jayan R, Das A, Kalloorkal A, Islam MM, Kundu S. Regulating Surface Charge by Embedding Ru Nanoparticles over 2D Hydroxides toward Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37243613 DOI: 10.1021/acsami.3c05512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exploring highly active and earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is considered one of the prime prerequisites for generating green hydrogen. Herein, a competent microwave-assisted decoration of Ru nanoparticles (NPs) over the bimetallic layered double hydroxide (LDH) material is proposed. The same has been used as an OER catalyst in a 1 M KOH solution. The catalyst shows an interesting Ru NP loading dependency toward the OER, and a concentration-dependent volcanic relationship between electronic charge and thermoneutral current densities has been observed. This volcanic relation shows that with an optimum concentration of Ru NPs, the catalyst could effectively catalyze the OER by obeying the Sabatier principle of ion adsorption. The optimized Ru@CoFe-LDH(3%) demands an overpotential value of only 249 mV to drive a current density value of 10 mA/cm2 with the highest TOF value of 14.4 s-1 as compared to similar CoFe-LDH-based materials. In situ impedance experiments and DFT studies demonstrated that incorporating the Ru NPs boosts the intrinsic OER activity of the CoFe-LDH on account of sufficient activated redox reactivities for both Co and lattice oxygen of the CoFe-LDH. As a result, compared with the pristine CoFe-LDH, the current density of Ru@CoFe-LDH(3%) at 1.55 V vs RHE normalized by ECSA increased by 86.58%. First-principles DFT analysis shows that the optimized Ru@CoFe-LDH(3%) possesses a lower d-band center that indicates weaker and more optimal binding characteristics for OER intermediates, improving the overall OER performance. Overall, this report displays an excellent correlation between the decorated concentration of NPs over the LDH surface which can tune the OER activity as verified by both experimental and theoretical calculations.
Collapse
Affiliation(s)
- Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Rahul Jayan
- Department of Mechanical Engineering, Wayne State University, Detroit 48201, Michigan, United States
| | - Ankit Das
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Althaf Kalloorkal
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, Detroit 48201, Michigan, United States
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
4
|
Mu X, Wang K, Lv K, Feng B, Yu X, Li L, Zhang X, Yang X, Lu Z. Doping of Cr to Regulate the Valence State of Cu and Co Contributes to Efficient Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16552-16561. [PMID: 36960922 DOI: 10.1021/acsami.2c18799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Water electrolysis in alkaline media is the most promising technology for hydrogen production, but efficient electrocatalysts are required to reduce the overpotential in HER and OER processes. In this work, the multicomponent transition metal catalyst Cr-Cu/CoOx was loaded on copper foam by electrodeposition and annealing, and the catalyst exhibited excellent electrochemical activity. The HER overpotential is 21 mV and the OER overpotential is 252 mV at a current density of 10 mA cm-2. The overall water splitting voltage is 1.51 V, even better than the Pt/C//RuO2 two-electrode system (1.61 V). The excellent performance of this catalyst is mainly derived from the close synergistic interaction among Cu, Co, and Cr. The doping of Cr modulates the valence states of Cu and Co at the active sites and improves the adsorption of various reaction intermediates. Density functional theory (DFT) calculations show that the doping of Cr can optimize the adsorption of the reaction intermediate H*. Meanwhile, the high-valent Cr and Co promote hydrolysis through strong adsorption with OH-. The present work provides a reasonable strategy for designing low-cost transition metals as efficient catalysts for water electrolysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| |
Collapse
|
5
|
Morais Ferreira RK, Ben Miled M, Nishihora RK, Christophe N, Carles P, Motz G, Bouzid A, Machado R, Masson O, Iwamoto Y, Célérier S, Habrioux A, Bernard S. Low temperature in situ immobilization of nanoscale fcc and hcp polymorphic nickel particles in polymer-derived Si-C-O-N(H) to promote electrocatalytic water oxidation in alkaline media. NANOSCALE ADVANCES 2023; 5:701-710. [PMID: 36756503 PMCID: PMC9890898 DOI: 10.1039/d2na00821a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 06/18/2023]
Abstract
We synthesized nickel (Ni) nanoparticles (NPs) in a high specific surface area (SSA) p-block element-containing inorganic compound prepared via the polymer-derived ceramics (PDC) route to dispatch the obtained nanocomposite towards oxygen evolution reaction (OER). The in situ formation of Ni NPs in an amorphous silicon carboxynitride (Si-C-O-N(H)) matrix is allowed by the reactive blending of a polysilazane, NiCl2 and DMF followed by the subsequent thermolysis of the Ni : organosilicon polymer coordination complex at a temperature as low as 500 °C in flowing argon. The final nanocomposite displays a BET SSA as high as 311 m2 g-1 while the structure of the NPs corresponds to face-centred cubic (fcc) Ni along with interstitial-atom free (IAF) hexagonal close-packed (hcp) Ni as revealed by XRD. A closer look into the compound through FEG-SEM microscopy confirms the formation of pure metallic Ni, while HR-TEM imaging reveals the occurrence of Ni particles featuring a fcc phase and surrounded by carbon layers; thus, forming core-shell structures, along with Ni NPs in an IAF hcp phase. By considering that this newly synthesized material contains only Ni without doping (e.g., Fe) with a low mass loading (0.15 mg cm-2), it shows promising OER performances with an overpotential as low as 360 mV at 10 mA cm-2 according to the high SSA matrix, the presence of the IAF hcp Ni NPs and the development of core-shell structures. Given the simplicity, the flexibility, and the low cost of the proposed synthesis approach, this work opens the doors towards a new family of very active and stable high SSA nanocomposites made by the PDC route containing well dispersed and accessible non-noble transition metals for electrocatalysis applications.
Collapse
Affiliation(s)
- Roberta Karoline Morais Ferreira
- Univ. Limoges, CNRS, IRCER UMR 7315 F-87000 Limoges France
- Chemical Engineering, Federal University of Santa Catarina 88010-970 Florianópolis Brazil
| | | | - Rafael Kenji Nishihora
- Univ. Limoges, CNRS, IRCER UMR 7315 F-87000 Limoges France
- Chemical Engineering, Federal University of Santa Catarina 88010-970 Florianópolis Brazil
| | - Nicolas Christophe
- Univ. Limoges, CNRS, IRCER UMR 7315 F-87000 Limoges France
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS F-86073 Poitiers France
| | - Pierre Carles
- Univ. Limoges, CNRS, IRCER UMR 7315 F-87000 Limoges France
| | - Günter Motz
- University of Bayreuth, Ceramic Materials Engineering (CME) Bayreuth Germany
| | - Assil Bouzid
- Univ. Limoges, CNRS, IRCER UMR 7315 F-87000 Limoges France
| | - Ricardo Machado
- Chemical Engineering, Federal University of Santa Catarina 88010-970 Florianópolis Brazil
| | - Olivier Masson
- Univ. Limoges, CNRS, IRCER UMR 7315 F-87000 Limoges France
| | - Yuji Iwamoto
- Graduated School of Engineering, Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| | - Stéphane Célérier
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS F-86073 Poitiers France
| | - Aurélien Habrioux
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS F-86073 Poitiers France
| | - Samuel Bernard
- Univ. Limoges, CNRS, IRCER UMR 7315 F-87000 Limoges France
| |
Collapse
|
6
|
N Dhandapani H, Karmakar A, Selvasundarasekar SS, Kumaravel S, Nagappan S, Madhu R, Ramesh Babu B, Kundu S. Modulating the Surface Electronic Structure of Active Ni Sites by Engineering Hierarchical NiFe-LDH/CuS over Cu Foam as an Efficient Electrocatalyst for Water Splitting. Inorg Chem 2022; 61:21055-21066. [PMID: 36523209 DOI: 10.1021/acs.inorgchem.2c03589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Water electrolysis encounters a challenging problem in designing a highly efficient, long durable, non-noble metal-free electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, in our work, a two-step hydrothermal reaction was performed to construct a hierarchal NiFe-layer double hydroxide (LDH)/CuS over copper foam for the overall water splitting reaction. While employed the same as an anode material, the designed heterostructure electrode NiFe-LDH/CuS/Cu exhibits excellent OER performance and it demands 249 mV overpotential to reach a current density of 50 mA cm-2 with a lower Tafel slope value of 81.84 mV dec-1. While as a cathode material, the NiFe-LDH/CuS/Cu shows superior HER performance and it demands just 28 mV of overpotential value to reach a current density of 10 mA cm-2 and a lower Tafel slope value of 95.98 mV dec-1. Hence, the NiFe-LDH/CuS/Cu outperforms the commercial Pt/C and RuO2 in terms of activity in HER and OER, respectively. Moreover, when serving as both the cathode and anode catalysts in an electrolyzer for total water splitting, the synthesized electrode only needs a cell potential of 1.55 V versus RHE to reach a current density of 20 mA cm-2 and long-term durability for 25 h in alkaline media. To study the interfacial electron transfer, Mott-Schottky experiments were performed, representing that the electron is transferred from n-type NiFe-LDH to p-type CuS as a result of creating the p-n junction in NiFe-LDH/CuS/Cu. The formation of this p-n junction allows the LDH layer to be more active toward the OH- adsorption and thereby could allow the OER or HER with a less energy input. This work affords another route to a cost effective, highly efficient catalyst toward producing clean energy across the globe.
Collapse
Affiliation(s)
- Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sam Sankar Selvasundarasekar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - B Ramesh Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
7
|
Longo A, Giannetti D, Tammaro D, Costanzo S, Di Maio E. TPU-based porous heterostructures by combined techniques. INT POLYM PROC 2022. [DOI: 10.1515/ipp-2022-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
The production of thermoplastic polyurethane-based porous heterostructures combining physical foaming with fused deposition modeling is detailed in this contribution. The choice of combining these two techniques lies in the possibility of creating objects endowed with a dual-scale structure at millimeter scale by fused deposition modeling and at microscopic scale by gas foaming. Thermal stability and rheological properties of the neat polymer were studied prior to foaming to design a suitable processing protocol and three different combined techniques are proposed: pressure quench, temperature rise and direct 3D foam printing. Foam morphologies were evaluated by SEM and foamed samples were characterized by thermal and mechanical analyses to highlight the differences among the combined processing techniques. Samples foamed via pressure quench exhibit the highest degree of crystallinity and a uniform cell morphology, also resulting in the largest stiffness. The results presented in this contribution open up the possibility of producing objects with complex geometry and porosity architecture at the dual scale.
Collapse
Affiliation(s)
- Alessandra Longo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale , University of Naples Federico II , Piazzale Vincenzo Tecchio, 80, 80126 , Naples (NA) , Italy
- foamlab, University of Naples Federico II , Piazzale Vincenzo Tecchio, 80, 80126 , Naples (NA) , Italy
- National Research Council (CNR), Institute of Polymers, Composites and Biomaterials (IPCB) , C/o Comprensorio Olivetti, Via Campi Flegrei 34, 80078 , Pozzuoli , Italy
| | - Deborah Giannetti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale , University of Naples Federico II , Piazzale Vincenzo Tecchio, 80, 80126 , Naples (NA) , Italy
- foamlab, University of Naples Federico II , Piazzale Vincenzo Tecchio, 80, 80126 , Naples (NA) , Italy
| | - Daniele Tammaro
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale , University of Naples Federico II , Piazzale Vincenzo Tecchio, 80, 80126 , Naples (NA) , Italy
| | - Salvatore Costanzo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale , University of Naples Federico II , Piazzale Vincenzo Tecchio, 80, 80126 , Naples (NA) , Italy
| | - Ernesto Di Maio
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale , University of Naples Federico II , Piazzale Vincenzo Tecchio, 80, 80126 , Naples (NA) , Italy
- foamlab, University of Naples Federico II , Piazzale Vincenzo Tecchio, 80, 80126 , Naples (NA) , Italy
| |
Collapse
|
8
|
Karmakar A, Das T, Karthick K, Kumaravel S, Selvasundarasekar SS, Madhu R, Chakraborty S, Kundu S. Tuning the Electronic Structure of a Ni-Vacancy-Enriched AuNi Spherical Nanoalloy via Electrochemical Etching for Water Oxidation Studies in Alkaline and Neutral Media. Inorg Chem 2022; 61:8570-8584. [PMID: 35613470 DOI: 10.1021/acs.inorgchem.2c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Internal Ni-vacancy-enriched spherical AuNi nanoalloys (AuNi1-2-T) have been prepared via a noble electrochemical etching method. AuNi1.5-T showed the highest oxygen evolution reaction (OER) activity compared to bare AuNi1.5, and it demands only 239 mV overpotential, which was 134 mV lesser than the overpotential required by commercial RuO2 at 10 mA cm-2 current density in a 1 M KOH solution (pH = 14). The calculated turnover frequency (TOF) value for AuNi1.5-T (0.0229 s-1) was 11.74 times higher than that of AuNi1.5 (0.00195 s-1). Also, the electrochemically activated AuNi1.5-T showed superior neutral water oxidation activity by demanding only 335 mV overpotential with a TOF value of 0.000135 s-1 in a 1 M Na2SO4 solution (pH = 7) at 10 mA cm-2. The long-term stability studies (over 60 h) reveal the excellent robustness of an electrochemically treated alloy system. Density functional theory based electronic structure calculations showed that in the case of AuNi and AuNi1.5, Au d, Au s, and Ni d orbitals have significant contributions, whereas in the Ni-vacant systems, the density of states is mainly governed by d orbitals of Au and Ni. Also, the Ni-vacant system possesses a work function value of 4.96 eV, which is lower than that of the pristine system (5.27 eV) and thereby favored OH- binding with an optimum adsorption energy. This result is in reasonable agreement with the experimental outcome of an accelerated OER in a vacancy-enriched Ni-rich AuNi alloy system. Also, mechanistic analysis reveals that the creation of a Ni vacancy can effectively alter the overall mechanism of the OER and thereby facilitate the same with a lower applied energy.
Collapse
Affiliation(s)
- Arun Karmakar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Electrochemical Process Engineering Division, Council of Scientific and Industrial Research, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Tisita Das
- Materials Theory for Energy Scavenging Laboratory, Harish-Chandra Research Institute Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj, Allahabad 211009, India
| | - Kannimuthu Karthick
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Electrochemical Process Engineering Division, Council of Scientific and Industrial Research, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Electrochemical Process Engineering Division, Council of Scientific and Industrial Research, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Sam Sankar Selvasundarasekar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Electrochemical Process Engineering Division, Council of Scientific and Industrial Research, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Electrochemical Process Engineering Division, Council of Scientific and Industrial Research, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging Laboratory, Harish-Chandra Research Institute Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj, Allahabad 211009, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Electrochemical Process Engineering Division, Council of Scientific and Industrial Research, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
| |
Collapse
|