1
|
De S, Ranjan P, Chaurasia V, Pal S, Pal S, Pandey P, Bera JK. Synchronous Proton-Hydride Transfer by a Pyrazole-Functionalized Protic Mn(I) Complex in Catalytic Alcohol Dehydrogenative Coupling. Chemistry 2023; 29:e202301758. [PMID: 37490592 DOI: 10.1002/chem.202301758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
A series of Mn(I) complexes Mn(L1 )(CO)3 Br, Mn(L2 )(CO)3 Br, Mn(L1 )(CO)3 (OAc) and Mn(L3 )(CO)3 Br [L1 =2-(5-tert-butyl-1H-pyrazol-3-yl)-1,8-naphthyridine, L2 =2-(5-tert-butyl-1H-pyrazol-3-yl)pyridine, L3 =2-(5-tert-butyl-1-methyl-1H-pyrazol-3-yl)-1,8-naphthyridine] were synthesized and fully characterized. The acid-base equilibrium between the pyrazole and the pyrazolato forms of Mn(L1 )(CO)3 Br was studied by 1 H NMR and UV-vis spectra. These complexes are screened as catalysts for acceptorless dehydrogenative coupling (ADC) of primary alcohols and aromatic diamines for the synthesis of benzimidazole and quinoline derivatives with the release of H2 and H2 O as byproducts. The protic complex Mn(L1 )(CO)3 Br shows the highest catalytic activity for the synthesis of 2-substituted benzimidazole derivatives with broad substrate scope, whereas a related complex [Mn(L3 )(CO)3 Br], which is devoid of the proton responsive β-NH unit, shows significantly reduced catalytic efficiency validating the crucial role of the β-NH functionality for the alcohol dehydrogenation reactions. Control experiments, kinetic and deuterated studies, and density functional theory (DFT) calculations reveal a synchronous hydride-proton transfer by the metal-ligand construct in the alcohol dehydrogenation step.
Collapse
Affiliation(s)
- Subhabrata De
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Prabodh Ranjan
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Vishal Chaurasia
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sourav Pal
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Saikat Pal
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Pragati Pandey
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Jitendra K Bera
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
2
|
Lin WS, Kuwata S. Recent Developments in Reactions and Catalysis of Protic Pyrazole Complexes. Molecules 2023; 28:molecules28083529. [PMID: 37110763 PMCID: PMC10143336 DOI: 10.3390/molecules28083529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Protic pyrazoles (N-unsubstituted pyrazoles) have been versatile ligands in various fields, such as materials chemistry and homogeneous catalysis, owing to their proton-responsive nature. This review provides an overview of the reactivities of protic pyrazole complexes. The coordination chemistry of pincer-type 2,6-bis(1H-pyrazol-3-yl)pyridines is first surveyed as a class of compounds for which significant advances have made in the last decade. The stoichiometric reactivities of protic pyrazole complexes with inorganic nitrogenous compounds are then described, which possibly relates to the inorganic nitrogen cycle in nature. The last part of this article is devoted to outlining the catalytic application of protic pyrazole complexes, emphasizing the mechanistic aspect. The role of the NH group in the protic pyrazole ligand and resulting metal-ligand cooperation in these transformations are discussed.
Collapse
Affiliation(s)
- Wei-Syuan Lin
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shigeki Kuwata
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
3
|
Pal S. Cp* non-innocence and the implications of (η 4-Cp*H)Rh intermediates in the hydrogenation of CO 2, NAD +, amino-borane, and the Cp* framework - a computational study. Dalton Trans 2023; 52:1182-1187. [PMID: 36648493 DOI: 10.1039/d2dt03611h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In hydrogenation mediated by half-sandwich complexes of Rh, Cp*Rh(III)-H intermediates are critical hydride-delivery agents. For bipyridine-supported complexes, a unique transformation named 'Cp* non-innocence' leads to the appearance of (Cp*H)Rh(I) intermediates, which are purported to exhibit enhanced hydride-delivery capabilities. In this work, DFT calculations performed to compare the role of these complexes in hydrogenation reveal that (Cp*H)Rh(I) intermediates do not compete with the conventional pathway (involving Cp*Rh(III)-H); instead they can lead to sequential hydrogenation of the Cp* framework, and potentially, catalyst degradation. Thus, caution is warranted when invoking the truly homogeneous nature of hydrogenation catalysis mediated by this popular class of complexes.
Collapse
Affiliation(s)
- Shrinwantu Pal
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|
4
|
King R, Canty AJ, Ariafard A, O’Hair RAJ, Ryzhov V. Catalytic Dehydrogenation of Liquid Organic Hydrogen Carrier Model Compounds by CpM + (M = Fe, Co, Ni) in the Gas Phase. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Robert King
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois60115, United States
| | - Allan J. Canty
- School of Natural Sciences−Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania7001, Australia
| | - Alireza Ariafard
- School of Natural Sciences−Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania7001, Australia
| | - Richard A. J. O’Hair
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, Victoria3010, Australia
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois60115, United States
| |
Collapse
|
5
|
Nekrasov RI, Peganova TA, Fedyanin IV, Gutsul EI, Filippov OA, Belkova NV, Kalsin AM. Versatile Reactivity of Half-Sandwich Rhodium(III) Iminophosphonamide Complexes. Inorg Chem 2022; 61:16081-16092. [PMID: 36149890 DOI: 10.1021/acs.inorgchem.2c02478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel 18e̅ and 16e̅ pentamethylcyclopentadienyl rhodium(III) complexes [(η5-C5Me5)RhX(NPN)] (1a,b, X = Cl; 2a-c, X = PF6, BAr4F) with chelating zwitterionic iminophosphonamide (NPN) ligands (Ph2P(NR)(NR'); a, R = R' = p-Tol; b, R = p-Tol, R' = Me; c, R = R' = Me) were synthesized and characterized by single-crystal X-ray diffraction. In the 16e̅ complexes 2, the rhodium (Rh) atom is efficiently stabilized by π-donation of unshared N electrons, thus hampering coordination of the external ligands and rendering the 18e̅ complexes labile. Due to low coordination enthalpy, the cationic 18e̅ monocarbonyl and pyridine adducts 2a·L are stable only at low temperatures. At room temperature, 2·CO adducts readily give stable carbonyl-carbamoyl complexes [(η5-C5Me5)Rh(CO){(CO(NR')Ph2P(NR)}]+ (4) formed as a result of CO insertion into the Rh-N bond, thus showing high nucleophilicity of the N atoms in 18e̅ complexes. High basicity of the Na+NPN- precursors caused side deprotonation of the η5-C5Me5 ligand during the synthesis of 1 that yields unstable fulvene Rh(I) complexes [(η4-C5Me4CH2)Rh{Ph2P(NR)(NR')2}] (3a,b). Complex 3a undergoes a facile reaction with isoprene to yield an unusual [(η5:η1-C5Me4(CH2)C(Me)═CHCH2)Rh(NPN)] complex─the first example of intermolecular 1,4-metallacycloaddition of diene to the Rh-fulvene complex.
Collapse
Affiliation(s)
- Roman I Nekrasov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilov Street, 119334 Moscow, Russian Federation
| | - Tat'yana A Peganova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilov Street, 119334 Moscow, Russian Federation
| | - Ivan V Fedyanin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilov Street, 119334 Moscow, Russian Federation
| | - Evgenii I Gutsul
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilov Street, 119334 Moscow, Russian Federation
| | - Oleg A Filippov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilov Street, 119334 Moscow, Russian Federation
| | - Natalia V Belkova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilov Street, 119334 Moscow, Russian Federation
| | - Alexander M Kalsin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilov Street, 119334 Moscow, Russian Federation
| |
Collapse
|