1
|
Zhao H, Chen L, Ni N, Lv Y, Wang H, Zhang J, Li Z, Liu Y, Geng Y, Xie Y, Wang L. Zn-Induced Synthesis of Porous Fe-N,S-C Electrocatalyst with Iron-Based Active Sites Containing Sulfides, Oxides and Nitrides for Efficient Oxygen Reduction and Zinc-Air Batteries. Molecules 2023; 28:5885. [PMID: 37570853 PMCID: PMC10421323 DOI: 10.3390/molecules28155885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
There is an urgent need to design and synthesize non-noble metal electrocatalysts (NNMEs) for the replacement of platinum-based electrocatalysts to enhance the sluggish oxygen reduction reaction (ORR) for Zn-air batteries and fuel cells. Herein, Fe-N,S-C materials were fabricated through two steps: first, reprecipitating hemin by adjusting the pH and, then, decorating it with melamine and cysteine in the presence of Zn2+. The resulting Fe-N,S-C-950 (Zn) was prepared after pyrolysis at 950 °C. Using this method, abundant iron-based active species with good dispersion were obtained. The fabrication of more micropores in Fe-N,S-C-950 (Zn) plays a positive role in the improvement of ORR activity. On comparison, Fe-N,S-C-950 (Zn) outperforms Fe-N,S-C-950 and Fe-N-C-950 (Zn) with respect to the ORR due to its larger specific surface area, porous structure, multiple iron-based active sites and N- and S-doped C. Fe-N,S-C-950 (Zn) achieves outstanding ORR performances, including a half-wave potential (E1/2) of 0.844 V and 0.715 V versus a reversible hydrogen electrode (RHE) in 0.1 M KOH and 0.1 M HClO4 solution, respectively. In addition, Fe-N,S-C-950 (Zn) shows an outstanding Zn-air battery performance with an open-circuit voltage (OCV) of 1.450 V and a peak power density of 121.9 mW cm-2, which is higher than that of 20 wt% Pt/C. As a result, the as-prepared electrocatalyst in this work shows the development of the Zn-assisted strategy combined with the assembly of porphyrins as NNMEs for the enhancement of the ORR in both alkaline and acidic solutions.
Collapse
Affiliation(s)
- Haiyan Zhao
- Liaoning Key Laboratory of Plasma Technology, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; (H.Z.); (N.N.); (Y.G.)
| | - Li Chen
- Shanghai Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China;
| | - Nan Ni
- Liaoning Key Laboratory of Plasma Technology, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; (H.Z.); (N.N.); (Y.G.)
| | - Yang Lv
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China;
| | - Hezhen Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
| | - Jia Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
| | - Zhiwen Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
| | - Yu Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, No. 536 West Huolinhe Road, Tongliao 028000, China
| | - Yubo Geng
- Liaoning Key Laboratory of Plasma Technology, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; (H.Z.); (N.N.); (Y.G.)
| | - Yan Xie
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; (H.W.); (J.Z.); (Y.L.)
| | - Li Wang
- Liaoning Key Laboratory of Plasma Technology, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; (H.Z.); (N.N.); (Y.G.)
| |
Collapse
|
2
|
MIL-88-Derived N and S Co-Doped Carbon Materials with Supplemental FeSx to Enhance the Oxygen Reduction Reaction Performance. Catalysts 2022. [DOI: 10.3390/catal12080806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To overcome the drawbacks of the single N-doped carbon materials, the further development of dual-heteroatoms (N and S) co-doped electrocatalysts is highly anticipated. Herein, N, S-doping and Fe-based carbon materials were synthesized by pyrolyzing a metal–organic framework (MIL-88) with the addition of N-/N, and S-containing ligands (chitosan and L-Cysteine) in the case of iron salt. The resulting electrocatalyst heat-treated at 850 °C (FeNSC-850) displays superior oxygen reduction reaction (ORR) performances to MIL-88-850, with an overall electron transfer number of 3.97 and a minor yield of HO2-% (<2.6%). In addition to the comparable activity to commercial Pt/C in catalyzing the ORR in alkaline solution, the FeNSC-850 also shows higher stability, with a slight decline in half-wave potential (∆E1/2 = 15 mV) after 5000-cycle scanning of cyclic voltammetry. In view of the multiple Fe-based active sites, the additional S doping within FeNSC-850 creates more FeSx active sites for boosting the ORR performances in alkaline solution.
Collapse
|