1
|
Wen X, Ma Y, Chen J, Wang B. A synthetically useful catalytic system for aliphatic C-H oxidation with a nonheme cobalt complex and m-CPBA. Org Biomol Chem 2024; 22:5729-5733. [PMID: 38932595 DOI: 10.1039/d4ob00807c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
We report herein a synthetically useful catalytic system for aliphatic C-H oxidation with a mononuclear nonheme cobalt(II) complex and m-chloroperbenzoic acid (m-CPBA). Preliminary mechanistic studies suggest that a high-valent cobalt-oxygen species (e.g., cobalt(IV)-oxo or cobalt(III)-oxyl) is the oxidant that effects C-H oxidation via a rate-determining hydrogen atom abstraction (HAA) step.
Collapse
Affiliation(s)
- Xiang Wen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Yidong Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Jie Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
2
|
Kang X, Wang H, Mei Z, Fan X, Gu J. Syntheses, Crystal Structures, and Catalytic Properties of Three Cu(II) and Cobalt(II) Coordination Compounds Based on an Ether-Bridged Tetracarboxylic Acid. Molecules 2023; 28:6911. [PMID: 37836754 PMCID: PMC10574591 DOI: 10.3390/molecules28196911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Three new products, [Cu2(μ3-dppa)(2,2'-bipy)2(H2O)]n·2nH2O (1), [Co4(μ4-dppa)2(phen)4(H2O)4]·2H2O (2), and [Co2(μ6-dppa)(μ-4,4'-bipy)(H2O)2]n·3nH2O (3) were synthesized using a hydrothermal method from Cu(II) and Co(II) metal(II) chlorides, 3-(3,4-dicarboxyphenoxy)phthalic acid (H4dppa), and different auxiliary ligands, namely 2,2'-bipyridine (2,2'-bipy),1,10-phenanthroline (phen), and 4,4'-bipyridine (4,4'-bipy). Products 1-3 were characterized by elemental analysis, FTIR, TGA, PXRD, SEM, and single-crystal X-ray crystallography. The structure of 1 features a 1D chain of the 2C1 topological type. Compound 2 shows a discrete tetrameric complex. Product 3 demonstrates a 3D metal-organic framework (MOF) with the new topology. Their structure and topology, thermal stability, and catalytic activity were studied. In particular, excellent catalytic activity was demonstrated for copper(II)-polymer 1 in the cyanosilylation reaction at 35 °C.
Collapse
Affiliation(s)
| | | | | | | | - Jinzhong Gu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (X.K.); (H.W.); (Z.M.); (X.F.)
| |
Collapse
|
3
|
Structural, Theoretical Investigations, Hirshfeld Surface Analysis, and Cytotoxicity Profile of a Neocuproine-Co(II)-Based Discrete Homodinuclear Complex. Appl Biochem Biotechnol 2023; 195:871-888. [PMID: 36219332 DOI: 10.1007/s12010-022-04180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
In this work, we aimed to synthesize a new cobalt(II) complex, namely [Co2(μ-HIPA)(NC)2(H2O)3(NO3)]·(NO3)(C2H5OH)(1) (where H3IPA = 5-hydroxy isophthalic acid and NC = 2,9-dimethyl-1,10-phenanthroline or neocuproine), as a promising chemotherapeutic agent. The diffraction (single crystal-XRD and powder-XRD), spectroscopic (FTIR and UV-visible), molar conductance, and thermal techniques were used to characterize complex 1. Single-crystal X-ray diffraction analysis reveals that Co(II) exists in an octahedral geometry, with the ligation of four oxygen atoms, and two nitrogen atoms. Topological analysis of complex 1 reveals 2,6C6 topological type as an underlying net. The plausible intermolecular interactions within complex 1 that control the crystal packing were analyzed by Hirshfeld surface analysis. In vitro cytotoxicity of complex 1 was evaluated against acute myeloid leukemia (THP-1), colorectal (SW480), and prostate (PC-3) cancer cell lines by utilizing an MTT assay. The result shows that complex 1 can inhibit the growth of cancer cells (THP-1, SW480, and PC-3) at lower inhibitory concentration (IC50) values of > 100, 43.6, and 95.1 µM respectively. The morphological changes induced by complex 1 on THP-1 and SW480 cancer cell lines were carried out with acridine orange/ethidium bromide staining methods. Additionally, comprehensive molecular docking studies were performed to understand the potential binding interactions of complex 1 with different bio-macromolecules.
Collapse
|
4
|
Change in the Electronic Structure of the Cobalt(II) Ion in a One-Dimensional Polymer with Flexible Linkers Induced by a Structural Phase Transition. Int J Mol Sci 2022; 24:ijms24010215. [PMID: 36613658 PMCID: PMC9820815 DOI: 10.3390/ijms24010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
A new 1D-coordination polymer [Co(Piv)2(NH2(CH2)6NH2)]n (1, Piv is Me3CCO2- anion) was obtained, the mononuclear fragments {Co(O2CR)2} within which are linked by μ-bridged molecules of hexamethylenediamine (NH2(CH2)6NH2). For this compound, two different monoclinic C2/c (α-1) and P2/n (β-1) phases were found at room temperature by single-crystal X-ray diffraction analysis, with a similar structure of chains and their packages in unit cells. The low-temperature phase (γ-1) of crystal 1 at 150 K corresponds to the triclinic space group P-1. As the temperature decreases, the structural phase transition (SPT) in the α-1 and β-1 crystals is accompanied by an increase in the crystal packing density caused by the rearrangements of both H-bonds and the nearest ligand environment of the cobalt atom ("octahedral CoN2O4 around the metal center at room temperature" → "pseudo-tetrahedral CoN2O2 at 150 K"). The SPT was confirmed by DSC in the temperature range 210-150 K; when heated above 220 K, anomalies in the behavior of the heat flow are observed, which may be associated with the reversibility of SPT; endo effects are observed up to 300 K. The SPT starts below 200 K. At 100 K, a mixture of phases was found in sample 1: 27% α-1 phase, 61% γ-1 phase. In addition, at 100 K, 12% of the new δ-1 phase was detected, which was identified from the diffraction pattern at 260 K upon subsequent heating: the a,b,c-parameters and unit cell volume are close to the structure parameters of γ-1, and the values of the α,β,γ-angles are significantly different. Further heating leads to a phase transition from δ-1 to α-1, which both coexist at room temperature. According to the DC magnetometry data, during cooling and heating, the χMT(T) curves for 1 form a hysteresis loop with ~110 K, in which the difference in the χMT values reaches 9%. Ab initio calculations of the electronic structure of cobalt(II) in α-1 and γ-1 have been performed. Based on the EPR data at 10 K and the ab initio calculations, the behavior of the χMT(T) curve for 1 was simulated in the temperature range of 2-150 K. It was found that 1 exhibits slow magnetic relaxation in a field of 1000 Oe.
Collapse
|
5
|
Jana RD, Chakraborty B, Paria S, Ohta T, Singh R, Mandal S, Paul S, Itoh S, Paine TK. Dioxygen Activation and Mandelate Decarboxylation by Iron(II) Complexes of N4 Ligands: Evidence for Dioxygen-Derived Intermediates from Cobalt Analogues. Inorg Chem 2022; 61:10461-10476. [PMID: 35759790 DOI: 10.1021/acs.inorgchem.2c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The isolation, characterization, and dioxygen reactivity of monomeric [(TPA)MII(mandelate)]+ (M = Fe, 1; Co, 3) and dimeric [(BPMEN)2MII2(μ-mandelate)2]2+ (M = Fe, 2; Co, 4) (TPA = tris(2-pyridylmethyl)amine and BPMEN = N1,N2-dimethyl-N1,N2-bis(pyridin-2-yl-methyl)ethane-1,2-diamine) complexes are reported. The iron(II)- and cobalt(II)-mandelate complexes react with dioxygen to afford benzaldehyde and benzoic acid in a 1:1 ratio. In the reactions, one oxygen atom from dioxygen is incorporated into benzoic acid, but benzaldehyde does not derive any oxygen atom from dioxygen. While no O2-derived intermediate is observed with the iron(II)-mandelate complexes, the analogous cobalt(II) complexes react with dioxygen at a low temperature (-80 °C) to generate the corresponding cobalt(III)-superoxo species (S), a key intermediate implicated in the initiation of mandelate decarboxylation. At -20 °C, the cobalt(II)-mandelate complexes bind dioxygen reversibly leading to the formation of μ-1,2-peroxo-dicobalt(III)-mandelate species (P). The geometric and electronic structures of the O2-derived intermediates (S and P) have been established by computational studies. The intermediates S and P upon treatment with a protic acid undergo decarboxylation to afford benzaldehyde (50%) with a concomitant formation of the corresponding μ-1,2-peroxo-μ-mandelate-dicobalt(III) (P1) species. The crystal structure of a peroxide species isolated from the cobalt(II)-carboxylate complex [(TPA)CoII(MPA)]+ (5) (MPA = 2-methoxyphenylacetate) supports the composition of P1. The observations of the dioxygen-derived intermediates from cobalt complexes and their electronic structure analyses not only provide information about the nature of active species involved in the decarboxylation of mandelate but also shed light on the mechanistic pathway of two-electron versus four-electron reduction of dioxygen.
Collapse
Affiliation(s)
- Rahul Dev Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Biswarup Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sayantan Paria
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Reena Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sourav Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19, Rajkumar Chakraborty Sarani, Kolkata 700009, India
| | - Shinobu Itoh
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
6
|
Daya VP, Jagan R, Chand DK. Self-assembled discrete and polymeric cobalt(II) complexes of a carboxylate appended tripodal tetradentate ligand: reactivity with aerial dioxygen or aqueous hydrogen peroxide. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|