1
|
Guerrero AS, O'Dowd PD, Pigg HC, Alley KR, Griffith DM, DeRose VJ. Comparison of click-capable oxaliplatin and cisplatin derivatives to better understand Pt(ii)-induced nucleolar stress. RSC Chem Biol 2023; 4:785-793. [PMID: 37799581 PMCID: PMC10549245 DOI: 10.1039/d3cb00055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
Pt(ii) chemotherapeutic complexes have been used as predominant anticancer drugs for nearly fifty years. Currently there are three FDA-approved chemotherapeutic Pt(ii) complexes: cisplatin, carboplatin, and oxaliplatin. Until recently, it was believed that all three complexes induced cellular apoptosis through the DNA damage response pathway. Studies within the last decade, however, suggest that oxaliplatin may instead induce cell death through a unique nucleolar stress pathway. Pt(ii)-induced nucleolar stress is not well understood and further investigation of this pathway may provide both basic knowledge about nucleolar stress as well as insight for more tunable Pt(ii) chemotherapeutics. Through a previous structure-function analysis, it was determined that nucleolar stress induction is highly sensitive to modifications at the 4-position of the 1,2-diaminocyclohexane (DACH) ring of oxaliplatin. Specifically, more flexible and less rigid substituents (methyl, ethyl, propyl) induce nucleolar stress, while more rigid and bulkier substituents (isopropyl, acetamide) do not. These findings suggest that a click-capable functional group can be installed at the 4-position of the DACH ring while still inducing nucleolar stress. Herein, we report novel click-capable azide-modified oxaliplatin mimics that cause nucleolar stress. Through NPM1 relocalization, fibrillarin redistribution, and γH2AX studies, key differences have been identified between previously studied click-capable cisplatin mimics and these novel click-capable oxaliplatin mimics. These complexes provide new tools to identify cellular targets and localization through post-treatment Cu-catalyzed azide-alkyne cycloaddition and may help to better understand Pt(ii)-induced nucleolar stress. To our knowledge, these are the first reported oxaliplatin mimics to include an azide handle, and cis-[(1R,2R,4S) 4-methylazido-1,2-cyclohexanediamine]dichlorido platinum(ii) is the first azide-functionalized oxaliplatin derivative to induce nucleolar stress.
Collapse
Affiliation(s)
- Andres S Guerrero
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| | - Paul D O'Dowd
- Department of Chemistry, RCSI Dublin Ireland
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals Ireland
| | - Hannah C Pigg
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| | - Katelyn R Alley
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| | - Darren M Griffith
- Department of Chemistry, RCSI Dublin Ireland
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals Ireland
| | - Victoria J DeRose
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| |
Collapse
|
2
|
Carrasco CJ, Montilla F, Álvarez E, Calderón-Montaño JM, López-Lázaro M, Galindo A. Chirality influence on the cytotoxic properties of anionic chiral bis(N-heterocyclic carbene)silver complexes. J Inorg Biochem 2022; 235:111924. [PMID: 35841721 DOI: 10.1016/j.jinorgbio.2022.111924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
Complexes Na3[Ag(NHCR)2], 2a-e and 2b'-c', where NHCR is a N-heterocyclic carbene of the 2,2'-(1H-2λ3,3λ4-imidazole-1,3-diyl)dicarboxylate type, were prepared by treatment of compounds HLR, 1a-e and 1b'-c' (2-(1-(carboxyalkyl)-1H-imidazol-3-ium-3-yl)carboxylate), with silver oxide in the presence of aqueous sodium hydroxide. They were characterized by analytical, spectroscopic (infrared, IR, 1H and 13C nuclear magnetic resonance, NMR, and circular dichroism) and X-ray methods (2a). In the solid state, the anionic part of complex 2a, [Ag(NHCH)2]3-, shows a linear disposition of Ccarbene-Ag-Ccarbene atoms and an eclipsed conformation of the two NHC ligands. The proposed bis(NHC) nature of the silver complexes was maintained in solution according to NMR and density functional theory (DFT) calculations. The cytotoxic activity of compounds 2 was evaluated against four cancer cell lines and one non-cancerous cell line and several structure-activity correlations were found for these complexes. For instance, the activity decreased when the bulkiness of the R alkyl group in Na3[Ag(NHCR)2] increased. More interesting is the detected chirality-anticancer relationship, where complexes Na3[Ag{(S,S)-NHCR}2] (R = Me, 2b; iPr, 2c) showed better anticancer activity than those of their enantiomeric derivatives Na3[Ag{(R,R)-NHCR}2] (R = Me, 2b'; iPr, 2c').
Collapse
Affiliation(s)
- Carlos J Carrasco
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
| | - Francisco Montilla
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | | | - Miguel López-Lázaro
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain.
| |
Collapse
|
3
|
McDevitt CE, Guerrero AS, Smith HM, DeRose VJ. Influence of ring modifications on nucleolar stress caused by oxaliplatin-like compounds. Chembiochem 2022; 23:e202200130. [PMID: 35475312 DOI: 10.1002/cbic.202200130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Oxaliplatin, a platinum compound in broad clinical use, can induce cell death through a nucleolar stress pathway rather than the canonical DNA damage response studied for other Pt(II) compounds. Previous work has found that the oxaliplatin 1,2-diaminocyclohexane (DACH) ring but not the oxalate leaving group is important to the ability to induce nucleolar stress. Here we study the influence of DACH ring substituents at the 4-position on the ability of DACH-Pt(II) compounds to cause nucleolar stress. We determine that DACH-Pt(II) compounds with 4-position methyl, ethyl, or propyl substituents induce nucleolar stress, but DACH-Pt(II) compounds with 4-isopropyl substituents do not induce nucleolar stress. This effect is independent of whether the substituent is in the axial or equatorial position relatively to the trans diamines of the ligand. These results suggest that spatially sensitive interactions could be involved in the ability of platinum compounds to cause nucleolar stress.
Collapse
Affiliation(s)
| | | | - Haley M Smith
- University of Oregon, Chemistry and Biochemistry, UNITED STATES
| | - Victoria Jeanne DeRose
- University of Oregon, Department of Chemistry, 1253 University of Oregon, 97403-1253, Eugene, UNITED STATES
| |
Collapse
|
4
|
de la Cueva-Alique I, de la Torre-Rubio E, Muñoz L, Calvo-Jareño A, Perez-Redondo A, Gude L, Cuenca T, Royo E. Stereoselective synthesis of oxime containing Pd(II) compounds: Highly effective, selective and stereo-regulated cytotoxicity against carcinogenic PC-3 cells. Dalton Trans 2022; 51:12812-12828. [DOI: 10.1039/d2dt01403c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New palladium compounds [Pd{(1S,4R)-NOH^NH(R)}Cl2] (R = Ph 1a or Bn 1b), [Pd{(1S,4R)-NOH^NH(R)}{(1S,4R)-NO^NH(R)}][Cl] (R = Ph 2a or Bn 2b) and corresponding [Pd{(1R,4S)-NOH^NH(R)}Cl2] (R = Ph 1a’ or Bn 1b’) and...
Collapse
|
5
|
Novohradsky V, Markova L, Kostrhunova H, Svitelova M, Kasparkova J, Barbanente A, Papadia P, Margiotta N, Hoeschele JD, Brabec V. Pt( ii) complex containing the 1 R,2 R enantiomer of trans-1,2-diamino-4-cyclohexene ligand effectively and selectively inhibits the viability of aggressive pancreatic adenocarcinoma cells and alters their lipid metabolism. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New compounds structurally derived from oxaliplatin exhibit high potency in malignant pancreatic adenocarcinoma cells. Their mechanism of antiproliferative action in pancreatic cancer cells involves inhibition of de novo lipid synthesis.
Collapse
Affiliation(s)
- Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Marie Svitelova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Alessandra Barbanente
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, I-70125 Bari, Italy
| | - Paride Papadia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Nicola Margiotta
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, I-70125 Bari, Italy
| | - James D. Hoeschele
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|