1
|
Song H, Szymczak NK. Lewis Acid-Tethered (cAAC)-Copper Complexes: Reactivity for Hydride Transfer and Catalytic CO 2 Hydrogenation. Angew Chem Int Ed Engl 2024; 63:e202411099. [PMID: 38967599 DOI: 10.1002/anie.202411099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/06/2024]
Abstract
We present a series of borane-tethered cyclic (alkyl)(amino)carbene (cAAC)-copper complexes, including a borane-capped Cu(I) hydride. This hydride is unusually hydridic and reacts rapidly with both CO2 and 2,6-dimethylphenol at room temperature. Its reactivity is distinct from variants without a tethered borane, and the underlying principles governing the enhanced hydricity were evaluated experimentally and theoretically. These stoichiometric results were extended to catalytic CO2 hydrogenation, and the borane-tethered (intramolecular) system exhibits ~3-fold enhancement relative to an intermolecular system.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
2
|
Gonzalez AG, Gonzalez F, De Leon E, Birkhoff KM, Yruegas S, Chen H, Shoshani MM. Synthesis and characterization of NiAl-hydride heterometallics: perturbing electron density within Al-H-Ni subunits. Dalton Trans 2024. [PMID: 39189397 DOI: 10.1039/d4dt01786b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Heterometallic hydride complexes are of growing interest due to their potential to contribute to highly active insertion-based catalysis; however, methods to modulate electron density within this class of molecules are underexplored. Addition of ancillary ligands to heterotrimetallic NiAl2H2 species (1) results in the formation of heterobimetallic NiAl-hydride complexes with varying phosphine donors (2-(L)2). Incorporation of sigma donating ancillary ligands of increasing strength led to contractions of the Ni-Al distances correlated to a strengthening of a back donation interaction to the Al-H sigma antibonding orbital, most prominently present in 2-(PMe3)2. Demethylation of the aryl ether from 2-(PMe3)2 provides access to a novel anionic nickel-aluminum complex (3) with a maintained bridged hydride moiety between Ni and Al. Increased negative charge in complex 3 results in an elongation of the Ni-Al interaction. Combined crystallographic, spectroscopic, and computational studies support a 3-center interaction within the Al-H-Ni subunits and were used to map the degree of Ni-H character of the series within the Al-H-Ni bonding continuum.
Collapse
Affiliation(s)
- Aleida G Gonzalez
- School of Integrated Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA
| | - Fernando Gonzalez
- School of Integrated Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA
| | - Edgardo De Leon
- School of Integrated Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA
| | | | - Sam Yruegas
- Department of Chemistry, Rice University, Houston, Texas, 77005, USA
| | - Haoyuan Chen
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, Texas, 78539, USA
- Department of Chemistry, Southern Methodist University, Dallas, Texas, 75275, USA.
| | - Manar M Shoshani
- School of Integrated Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas, 66045, USA.
| |
Collapse
|
3
|
Höeg F, Luxenberger L, Fedulin A, Jacobi von Wangelin A. Cobalt-catalyzed double hydroboration of pyridines. Chem Sci 2024; 15:5201-5210. [PMID: 38577376 PMCID: PMC10988591 DOI: 10.1039/d3sc05418g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024] Open
Abstract
Cobalt(ii) complexes were prepared from a modular phosphinopyridonate platform and applied to the hydroboration of pyridines. The synthetically useful, yet challenging, double hydroboration toward tetrahydropyridine derivatives was successfully performed with high activity and regiocontrol. This new method enabled the direct synthesis of N-heterocyclic allylic boronates from commercial pyridines and pinacolborane (HBpin). One-pot acetylation afforded the bench-stable borylated N-acetyl tetrahydropyridines in good yields. The synthetic utility of this procedure was demonstrated by a gram-scale double hydroboration-acetylation sequence followed by chemical diversification. Mechanistic experiments indicated metal-ligand cooperativity involving ligand-centered C-H activation and the intermediacy of a cobalt(iii) hydride species.
Collapse
Affiliation(s)
- Finn Höeg
- Dept of Chemistry, University of Hamburg Martin Luther King Pl. 6 20146 Hamburg Germany
- Philipps-University of Marburg Hans-Meerwein-Str 4 35043 Marburg Germany
| | - Lea Luxenberger
- Dept of Chemistry, University of Hamburg Martin Luther King Pl. 6 20146 Hamburg Germany
| | - Andrey Fedulin
- Dept of Chemistry, University of Hamburg Martin Luther King Pl. 6 20146 Hamburg Germany
- University of Regensburg Universitätsstr 31 93053 Regensburg Germany
| | | |
Collapse
|
4
|
Abstract
This tutorial review showcases recent (2015-2021) work describing ligand construction as it relates to the design of secondary coordination spheres (SCSs). Metalloenzymes, for example, utilize SCSs to stabilize reactive substrates, shuttle small molecules, and alter redox properties, promoting functional activity. In the realm of biomimetic chemistry, specific incorporation of SCS residues (e.g., Brønsted or Lewis acid/bases, crown ethers, redox groups etc.) has been shown to be equally critical to function. This contribution illustrates how fundamental advances in organic and inorganic chemistry have been used for the construction of such SCSs. These imaginative contributions have driven exciting findings in many transformations relevant to clean fuel generation, including small molecule (e.g., H+, N2, CO2, NOx, O2) reduction. In most cases, these reactions occur cooperatively, where both metal and ligand are requisite for substrate activation.
Collapse
Affiliation(s)
- Marcus W Drover
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
5
|
Zurakowski JA, Austen BJ, Drover MW. Exterior decorating: Lewis acid secondary coordination spheres for cooperative reactivity. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Zurakowski JA, Austen B, Brown KC, Drover MW. Bis(1-Bora-4-phosphorinane) Ring Closure at Cp*M (M = Fe, Co) Complexes. Chem Commun (Camb) 2022; 58:2500-2503. [DOI: 10.1039/d1cc07060f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis(1-bora-4-phosphorinane) metal complexes have been synthesized using a Cp*M-protecting (M = Fe, Co, Cp* = C5Me5-) strategy and structurally authenticated by NMR spectroscopy and single crystal X-ray diffraction. Synthesis of...
Collapse
|
7
|
Zurakowski JA, Austen BJH, Dufour MC, Spasyuk DM, Nelson DJ, Drover MW. Lewis Acid-Promoted Oxidative Addition at a [Ni 0 (diphosphine) 2 ] Complex: The Critical Role of a Secondary Coordination Sphere. Chemistry 2021; 27:16021-16027. [PMID: 34550623 DOI: 10.1002/chem.202103121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 11/11/2022]
Abstract
Oxidative addition represents a critical elementary step in myriad catalytic transformations. Here, the importance of thoughtful ligand design cannot be overstated. In this work, we report the intermolecular activation of iodobenzene (PhI) at a coordinatively saturated 18-electron [Ni0 (diphosphine)2 ] complex bearing a Lewis acidic secondary coordination sphere. Whereas alkyl-substituted diphosphine complexes of Group 10 are known to be unreactive in such reactions, we show that [Ni0 (P2 BCy 4 )2 ] (P2 BCy 4 =1,2-bis(di(3-dicyclohexylboraneyl)-propylphosphino)ethane) is competent for room-temperature PhI cleavage to give [NiII (P2 BCy 4 )(Ph)(I)]. This difference in oxidative addition reactivity has been scrutinized computationally - an outcome that is borne out in ring-opening to provide the reactive precursor - for [Ni0 (P2 BCy 4 )2 ], a "boron-trapped" 16-electron κ1 -diphosphine Ni(0) complex. Moreover, formation of [NiII (P2 BCy 4 )(Ph)(I)] is inherent to the P2 BCy 4 secondary coordination sphere: treatment of the Lewis adduct, [Ni0 (P2 BCy 4 )2 (DMAP)8 ] with PhI provides [NiII (P2 BCy 4 )2 (DMAP)8 (I)]I via iodine-atom abstraction and not a [NiII (Ph)(I)(diphosphine)] compound - an unusual secondary sphere effect. Finally, the reactivity of [Ni0 (P2 BCy 4 )2 ] with 4-iodopyridine was surveyed, which resulted in a pyridyl-borane linked oligomer. The implications of these outcomes are discussed in the context of designing strongly donating, and yet labile diphosphine ligands for use in a critical bond activation step relevant to catalysis.
Collapse
Affiliation(s)
- Joseph A Zurakowski
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Brady J H Austen
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Maeve C Dufour
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Denis M Spasyuk
- Canadian Light Source Inc., 44 Innovation Blvd., Saskatoon, SK, S7N 2V3, Canada
| | - David J Nelson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland
| | - Marcus W Drover
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|