1
|
Ma XF, Zeng D, Xu C, Bao SS, Zheng LM. Layered lanthanide phosphonates Ln(2-qpH)(SO 4)(H 2O) 2 (Ln = La, Ce, Pr, Nd, Sm): polymorphism and magnetic properties. Dalton Trans 2023; 52:11913-11921. [PMID: 37563974 DOI: 10.1039/d3dt01698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Polymorphic layered lanthanide coordination polymers provide opportunities to study the effect of intralayer and interlayer interactions on their magnetic dynamics. Herein we report a series of layered lanthanide phosphonates, namely, α-Ln(2-qpH)(SO4)(H2O)2 (Ln = Sm) (α-Ln), β-Ln(2-qpH)(SO4)(H2O)2 (Ln = Pr, Nd, Sm) (β-Ln) and γ-Ln(2-qpH)(SO4)(H2O)2 (Ln = La, Ce, Pr, Nd, Sm) (γ-Ln) (2-qpH2 = 2-quinolinephosphonic acid), which crystallize in monoclinic P21/c (α-Ln), triclinic P1̄ (β-Ln) and orthorhombic Pbca (γ-Ln) space groups, respectively. The structural differences between the β- and γ-phases lie not only in the intralayer but also in the interlayer. Within the layers, the Ln2O2 dimers are aligned parallel in the β-phase, but are non-parallel in the γ-phase. In the interlayer, there are π-π interactions between the quinoline groups in the α- and β-phases but not in the γ-phase. Magnetic studies reveal a field-induced slow relaxation of the magnetisation at low temperatures for compounds γ-Ce, β-Nd, and γ-Nd, and the impact of polymorphism on the magnetic dynamics of Nd(III) compounds is discussed.
Collapse
Affiliation(s)
- Xiu-Fang Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Dai Zeng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Chang Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
2
|
Saha S, Das KS, Pal P, Hazra S, Ghosh A, Bala S, Ghosh A, Das AK, Mondal R. A Silver-Based Integrated System Showing Mutually Inclusive Super Protonic Conductivity and Photoswitching Behavior. Inorg Chem 2023; 62:3485-3497. [PMID: 36780226 DOI: 10.1021/acs.inorgchem.2c03785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoinduced electricity and proton conductivity led fuel cells have emerged, inter alia, as highly promising systems for unconventional energy harvesting. Notwithstanding their individual presence with widely acclaimed results, an integrating system with mutually inclusive manifestation of both features has hitherto not been reported in the literature. To achieve this objective, our approach was to design a ligand system incorporating prerequisite features of both systems, like extended conjugation instigating photophysical activity and functional groups facilitating ionic conduction. As such, we report herein the design, synthesis, and characterization of a pyridyl-pyrazole-based silver compound that exhibits an excellent photocurrent generation and very high proton conductivity. The X-ray single-crystal structure of the Ag complex fully supports our notion, showing extensive π-π conjugated aromatic rings with a protruding free sulfonic group, facing toward solvent-filled channels with numerous supramolecular interactions. The nanoscopic silver metallogel induces semiconductive features in the system which ultimately result in photoresponse behavior in terms of photocurrent generation with an whopping photocurrent gain (Ion/Ioff) of 21.2. To complete the idea of an integrated system, the proton conductivity values were also measured for both gel and crystalline states, while the former state yields a better result. The maximum proton conductivity value turns out to be 1.03 × 10-2 S cm-1 at 70 °C, which is higher than or comparable to those of well-known systems in the literature for proton conductivity.
Collapse
Affiliation(s)
- Sayan Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Pulak Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Soumyajit Hazra
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Sukhen Bala
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Aswini Ghosh
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Abhijit Kumar Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| | - Raju Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road Jadavpur, Kolkata 700 032, India
| |
Collapse
|
3
|
Shao D, Sahu PP, Tang WJ, Zhang YL, Zhou Y, Xu FX, Wei XQ, Tian Z, Singh SK, Wang XY. A single-ion magnet building block strategy toward Dy 2 single-molecule magnets with enhanced magnetic performance. Dalton Trans 2022; 51:18610-18621. [PMID: 36448324 DOI: 10.1039/d2dt03046b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A molecular dysprosium(III) complex [Dy(DClQ)3(H2O)2] (1) was used as a building unit for the construction of lanthanide SMMs, leading to the isolation of two dinuclear Dy(III) complexes, namely [Dy2(DClQ)6(MeOH)2] (2) and [Dy2(DClQ)6(bpmo)2]·6MeCN (3) (DClQ = 5,7-dichloro-8-hydroxyquinoline, bpmo = 4,4'-dipyridine-oxide). Structural analyses revealed the same N3O5 coordination environment of the Dy(III) centers with a distorted biaugmented trigonal prism (C2V symmetry) and triangular dodecahedron (D2d symmetry) for 2 and 3, respectively. Magnetic studies revealed the presence of ferromagnetic and weak antiferromagnetic exchange interactions between the Dy3+ centers in 2 and 3, respectively. Interestingly, slow relaxation of magnetization at zero fields was evidenced with an Ueff of 51.4 K and 159.0 K for complexes 2 and 3, respectively. The detailed analysis of relaxation dynamics discloses that the Orbach process is dominant for 2 whereas Raman and QTM play an important role in 3. Theoretical calculations were carried out to provide insight into the magnetic exchange interactions and relaxation dynamics for the complexes. Due to a single-ion magnet (SIM) of 1, the foregoing results demonstrate a SIM modular synthetic route for the preparation of dinuclear lanthanide SMMs.
Collapse
Affiliation(s)
- Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.,State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Prem Prakash Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Wan-Jie Tang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Yang-Lu Zhang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Yue Zhou
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Fang-Xue Xu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiao-Qin Wei
- Department of Material Science and Engineering, Shanxi Province Collaborative Innovation Center for Light Materials Modification and Application, Jinzhong University, Jinzhong, 030619, P. R. China
| | - Zhengfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
4
|
Chen H, Sun L, Zheng K, Zhang J, Ma P, Wang J, Niu J. Oxalate-bridging Nd III-based arsenotungstate with multifunctional NIR-luminescence and magnetic properties. Dalton Trans 2022; 51:10257-10265. [PMID: 35748588 DOI: 10.1039/d2dt01066f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxalate bridged Nd-based arsenotungstate, K14Na6H4[{(As2W19O67(H2O))Nd(H2O)2}2(C2O4)]·64H2O (1), was obtained from the reaction of K14[As2W19O67(H2O)], oxalic acid, and NdCl3·6H2O in mildly acidic aqueous solution. The polyanion exhibits a dimeric structure in which the fully deprotonated oxalate ligands bridge two NdIII cations and the arsenotungstate anions act as blocking ligands. The photoluminescence (PL) spectrum of 1 shows the characteristic emission peak of NdIII in the near-infrared (NIR) region. However, the O → W charge-transfer transitions of arsenotungstate cannot effectively sensitize the emission of NdIII cations as confirmed by the emission spectrum, due to the mismatch of the energy gap between 3T1u → 1A1g (21.57 × 103 cm-1) of arsenotungstate components and 4F3/2 → 4I9/2 (11.43 × 103 cm-1) of NdIII cations. Magnetic studies of 1 demonstrate its field-induced single-molecule magnet (SMM) behavior. Direct current magnetic susceptibility studies imply the weak ferromagnetic couplings present between the two neighboring NdIII cations. In addition, the synergy between the coordination configuration of NdIII cations and the intramolecular magnetic interaction was discussed.
Collapse
Affiliation(s)
- Hanhan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Lin Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Kangting Zheng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jinpeng Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| |
Collapse
|