1
|
Yin C, Wang X, Ding JG, Li BL, Wu B, Hu CJ. Syntheses, Structures, and Photocatalytic and Sonocatalytic Degradations of Methyl Blue of Cu(II) and Mn(II) Coordination Polymers Based on Tri(triazole) and Dicarboxylate Ligands. Molecules 2024; 29:5289. [PMID: 39598678 PMCID: PMC11596611 DOI: 10.3390/molecules29225289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Cu(II) and Mn(II) coordination polymers [Cu(ttpa)(sub)]n (Cuttpa or 1) and {[Mn2(ttpa)2(nip)2(H2O)2]·3H2O}n (Mnttpa or 2) (ttpa = tris(4-(1,2,4-triazol-1-yl)phenyl)amine, H2sub = suberic acid, nip = 5-nitroisophthalicate) were hydrothermally prepared and the structures were characterized. Cuttpa exhibited a 2D (4,4) network based on [Cu2(COO)4] dimers with upper and lower dangled ttpa ligands and a 2D → 3D polythreaded network. Mnttpa showed a 2D (4,4) network with dangled uncoordinated triazole rings from ttpa ligands and nitro groups from nip2- ligands and a 2D → 3D polythreaded network. Eg data of Cuttpa and Mnttpa were 1.88 eV and 2.11 eV. Cuttpa and Mnttpa exhibited good catalytic activity for the decomposition of methyl blue (MB) under visible light and supersound irradiation. The decomposition mechanism using Cuttpa was explored. The holes (h+) and •OH hydroxyl radicals played the main roles, and the •O2- superoxide radicals played certain auxiliary roles in the decomposition of MB within the Cuttpa catalyst.
Collapse
Affiliation(s)
| | | | | | - Bao-Long Li
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (C.Y.); (X.W.); (J.-G.D.); (B.W.); (C.-J.H.)
| | | | | |
Collapse
|
2
|
Li S, Wu D, Wang X, Xiong J, Zhang L, Ma K. Zeolite-encapsulated copper(II) complexes with NNO-tridentate Schiff base ligands: catalytic activity for methylene blue (MB) degradation under near neutral conditions. Dalton Trans 2024; 53:1517-1527. [PMID: 38164102 DOI: 10.1039/d3dt03694d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Three novel copper Schiff base complexes, L1Cu(OAc)-L3Cu(OAc), bearing NNO tridentate ligands were synthesized and successfully entrapped in zeolite. All free and encapsulated complexes were fully characterized through experiments combined with theoretical calculations, and were subsequently employed as catalysts to activate H2O2 for degradation of methylene blue (MB). The catalytic activity of free complexes was tunable by substitution effects. The complex L3Cu(OAc) displayed enhanced efficiency by adopting bulky and donor substitutions due to the lower oxidation states. However, the free complexes exhibited modified structural and catalytic properties upon encapsulation into the zeolite. The constraint from the zeolite holes and coordination geometry caused the alteration of electronic structures and subsequently modified the reactivity. This study revealed that upon encapsulation, the larger molecular dimension of L3Cu(OAc) resulted in additional distorted geometry, leading to higher catalytic efficiency for MB degradation with more blue shifts in the UV-Vis spectrum. There was high catalytic activity by LnCu(OAc)-Y compared to that of the free complex, and high recyclability under near neutral conditions. In addition, the catalytic efficiency of L3Cu(OAc)-Y was higher or equivalent compared to other catalysts. This work provides new complexes with NNO tridentate ligands encapsulated inside zeolite and explains the relationship between the modified structure and functionality.
Collapse
Affiliation(s)
- Shuyu Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, Sichuan, China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Die Wu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, Sichuan, China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Xiting Wang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, Sichuan, China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Jiaxing Xiong
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, Sichuan, China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Li Zhang
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China.
| | - Kaili Ma
- Analysis and Testing Center, Southeast University, Nanjing 211189, Jiangsu, China.
| |
Collapse
|
3
|
Zhou WJ, Ma LX, Li LY, Zha M, Li BL, Wu B, Hu CJ. Synthesis of a 3D Cu(II) MOF and its heterostructual g-C3N4 composite showing improved visible-light-driven photodegradation of organic dyes. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|