1
|
Du X, Xie H, Qin T, Yuan Y, Wang N. Ultrasensitive optical detection of strontium ions by specific nanosensor with ultrahigh binding affinity. Nat Commun 2024; 15:6530. [PMID: 39095434 PMCID: PMC11297212 DOI: 10.1038/s41467-024-50895-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
The release and escape of radioactive materials has posed tremendous threats to the global environment. Among various radioactive elements, 90Sr has attracted growing attention due to its long half-life and its tendency to accumulate in bone tissue. Nonetheless, the concentration of 90Sr in radioactive waste is exceedingly low, far below the detection limits of currently available strontium-targeting chemical sensors. Herein, we propose an optical nanosensor (Sr2+-nanosensor) that exhibits an ultra-low detection limit of 0.5 nM, surpassing the 90Sr in the treated radioactive water from the Fukushima. The sensor offers wide sensing range of eight orders of magnitude, rapid response of less than 10 s, and high selectivity against 31 common ions. These excellent performances are attributed to a specific ligand (Sr2+-ligand) for Sr2+ recognition. The Sr2+ is found to be bound by six oxygen atoms from the Sr2+-ligand with a stability constant at least two orders higher than that of other traditional ligands. This study offers invaluable insights for the design of Sr2+-sensing methodologies as well as a technique for detecting trace amounts of environmental radioactive pollution.
Collapse
Affiliation(s)
- Xinfeng Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China
| | - Hua Xie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China
| | - Tianyi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, 570228, PR China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China.
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China.
| |
Collapse
|
2
|
Zhang CH, Zhou BX, Lin X, Mo YH, Cao J, Cai SL, Fan J, Zhang WG, Zheng SR. Iodine Adsorption-Desorption-Induced Structural Transformation and Improved Ag + Turn-On Luminescent Sensing Performance of a Nonporous Eu(III) Metal-Organic Framework. Inorg Chem 2024; 63:4185-4195. [PMID: 38364251 DOI: 10.1021/acs.inorgchem.3c04222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Posttreatment of pristine metal-organic frameworks (MOFs) with suitable vapor may be an effective way to regulate their structures and properties but has been less explored. Herein, we report an interesting example in which a crystalline nonporous Eu(III)-MOF was transferred to a porous amorphous MOF (aMOF) via iodine vapor adsorption-desorption posttreatment, and the resulting aMOF showed improved turn-on sensing properties with respect to Ag+ ions. The crystalline Eu-MOF, namely, Eu-IPDA, was assembled from Eu(III) and 4,4'-{4-[4-(1H-imidazol-1-yl)phenyl]pyridine-2,6-diyl}dibenzoic acid (H2IPDA) and exhibited a two-dimensional (2D) coordination network based on one-dimensional secondary building blocks. The close packing of the 2D networks gives rise to a three-dimensional supramolecular framework without any significant pores. Interestingly, the nonporous Eu-IPDA could absorb iodine molecules when Eu-IPDA crystals were placed in iodine vapor at 85 °C, and the adsorption capacity was 1.90 g/g, which is comparable to those of many MOFs with large BET surfaces. The adsorption of iodine is attributed to the strong interactions among the iodine molecule, the carboxy group, and the N-containing group and leads to the amorphization of the framework. After immersion of the iodine-loaded Eu-IPDA in EtOH, approximately 89.7% of the iodine was removed, resulting in a porous amorphous MOF, denoted as a-Eu-IPDA. In addition, the remaining iodine in the a-Eu-IPDA framework causes strong luminescent quenching in the fluorescence emission region of the Eu(III) center when compared with that in Eu-IPDA. The luminescence intensity of a-Eu-IPDA in water suspensions was significantly enhanced when Ag+ ions were added, with a detection limit of 4.76 × 10-6 M, which is 1000 times that of pristine Eu-IPDA. It also showed strong anti-interference ability over many common competitive metal ions and has the potential to sense Ag+ in natural water bodies and traditional Chinese medicine preparations. A mechanistic study showed that the interactions between Ag+ and the absorbed iodine, the carboxylate group, and the N atoms all contribute to the sensing performance of a-Eu-IPDA.
Collapse
Affiliation(s)
- Chu-Hong Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Bing-Xun Zhou
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Xian Lin
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Yi-Hong Mo
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jun Cao
- School of Materials Science and Hydrogen Energy, Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, P. R. China
| | - Song-Liang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Wei-Guang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Sheng-Run Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
3
|
Li J, Li Y, Pun EYB, Lin H. Recyclable and flexible Bi(Ho 3+-Yb 3+)OBr/g-C 3N 4 composite porous fiber for efficient water purification and real-time temperature sensing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117545-117561. [PMID: 37872340 DOI: 10.1007/s11356-023-30484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Herein, an electrospinning porous nanofiber with large specific surface area, excellent flexibility, remarkable tensile strength, and high stability of thermal degradation has been developed by loading Ho3+/Yb3+ co-doped BiOBr/g-C3N4 (BHY/CN) heterojunction photocatalysts on polyacrylonitrile (PAN) nanofibers. The optimized BHY/CN-2 nanofiber demonstrates outstanding photocatalytic activity for the degradation of 98.83% tetracycline (TC, 60 min) and 99.06% rhodamine B (RhB, 90 min) under simulated sunlight irradiation, and maintains a high level of reusability and recycling stability in three cycles. In addition, temperature monitoring of the catalytic degradation process can be feedback by (5F4, 5S2) → 5I8 and 5F5 → 5I8 radiation transitions of Ho3+ with excellent sensitivity. More importantly, the nanofiber luminescence performance is enhanced by the doping of g-C3N4, which maintain the effective upconversion luminescence properties even in water, providing a reliable reference for real-time monitoring and feedback of the operating temperature, and further expanding the application fields of photocatalysts.
Collapse
Affiliation(s)
- Junhan Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Yue Li
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Edwin Yue Bun Pun
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hai Lin
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.
| |
Collapse
|
4
|
Lo Presti F, Pellegrino AL, Consoli N, Malandrino G. Green Ultrasound-Assisted Synthesis of Rare-Earth-Based MOFs. Molecules 2023; 28:6088. [PMID: 37630340 PMCID: PMC10458194 DOI: 10.3390/molecules28166088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Rare-earth (RE)-based metal organic frameworks (MOFs) are quickly gaining popularity as flexible functional materials in a variety of technological fields. These MOFs are useful for more than just conventional uses like gas sensors and catalyst materials; in fact, they also show significant promise in emerging technologies including photovoltaics, optical, and biomedical applications. Using yttrium and europium as ionic host centres and dopants, respectively, and 1,3,5-benzenetricarboxylic acid (H3-BTC) as an organic linker, we describe a simple and green approach for the fabrication of RE-MOFs. Specifically, Y-BTCs and Eu-doped Y-BTCs MOFs have been synthesised in a single step using an eco-friendly method that makes use of ultrasound technology. To establish a correlation between the morphological and structural properties and reaction conditions, a range of distinct reaction periods has been employed for the synthetic processes. Detailed analyses of the synthesised samples through powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FE-SEM), and Fourier-transform infrared spectroscopy (FT-IR) have confirmed the phase formation. Furthermore, thermal analyses such as thermogravimetric analysis (TGA) have been employed to evaluate the thermal stability and structural modifications of the Y-BTC and Eu-doped Y-BTC samples. Finally, the luminescent properties of the synthesised samples doped with Eu3+ have been assessed, providing an evaluation of their characteristics. As a proof of concept, an Eu-doped Y-BTC sample has been applied for the sensing of nitrobenzene as a molecule test of nitro derivatives.
Collapse
Affiliation(s)
| | | | | | - Graziella Malandrino
- Dipartimento di Scienze Chimiche, Università di Catania, and INSTM UdR Catania, Viale A. Doria 6, I-95125 Catania, Italy; (F.L.P.); (A.L.P.)
| |
Collapse
|
5
|
Hao M, Liu Y, Wu W, Wang S, Yang X, Chen Z, Tang Z, Huang Q, Wang S, Yang H, Wang X. Advanced porous adsorbents for radionuclides elimination. ENERGYCHEM 2023:100101. [DOI: doi.org/10.1016/j.enchem.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
6
|
Lo Presti F, Borzì A, Lucia Pellegrino A, Rossi P, Paoli P, Malandrino G. Morphology controlled synthesis of yttrium metal-organic frameworks with a tritopic ligand. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|