1
|
Jiang Y, Liu P, Gao R, Bi J, Gao L, Wang Y. 2D Phthalocyanine-Assembled Porous Nanostructure-Based Electrochemical Platform for High-Efficiency Detection of Ascorbic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2080-2088. [PMID: 36709440 DOI: 10.1021/acs.langmuir.2c03456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this work, a novel two-dimensional (2D) porous nanostructure is constructed upon air/water interfacial assembly of 12-crown-ether-4-incorporated double-decker phthalocyanine (Pc2). The combination of the good electroconductivity of phthalocyanine and the great surface area of the porous structure endows the assembled film with excellent chemical sensing property for ascorbic acid (AA). The low limit of detection can be 0.15 μM with a large linear concentration range and strong anti-interfering ability, which can be comparable to the best results of tetrapyrrole-based electrochemical sensors for AA. Furthermore, the obtained 2D porous assembled film sensor can be applied in real-time monitoring of AA in commercial drinks, indicating its application potential in accurate detection of AA in real samples.
Collapse
Affiliation(s)
- Yuying Jiang
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety. Institute of Agricultural Quality Standards and Testing Technology, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, 250100 Jinan, Shandong Province, China
| | - Pingxiang Liu
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety. Institute of Agricultural Quality Standards and Testing Technology, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, 250100 Jinan, Shandong Province, China
| | - Rui Gao
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety. Institute of Agricultural Quality Standards and Testing Technology, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, 250100 Jinan, Shandong Province, China
| | - Jingxiu Bi
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety. Institute of Agricultural Quality Standards and Testing Technology, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, 250100 Jinan, Shandong Province, China
| | - Lei Gao
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety. Institute of Agricultural Quality Standards and Testing Technology, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, 250100 Jinan, Shandong Province, China
| | - Yutao Wang
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety. Institute of Agricultural Quality Standards and Testing Technology, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, 250100 Jinan, Shandong Province, China
| |
Collapse
|
2
|
Martynov AG, Horii Y, Katoh K, Bian Y, Jiang J, Yamashita M, Gorbunova YG. Rare-earth based tetrapyrrolic sandwiches: chemistry, materials and applications. Chem Soc Rev 2022; 51:9262-9339. [DOI: 10.1039/d2cs00559j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarises advances in chemistry of tetrapyrrole sandwiches with rare earth elements and highlights the current state of their use in single-molecule magnetism, organic field-effect transistors, conducting materials and nonlinear optics.
Collapse
Affiliation(s)
- Alexander G. Martynov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Leninskiy pr., 31, bldg.4, Moscow, Russia
| | - Yoji Horii
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Keiichi Katoh
- Department of Chemistry, Graduate School of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Yongzhong Bian
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Daxing Research Institute, and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Daxing Research Institute, and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yulia G. Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Leninskiy pr., 31, bldg.4, Moscow, Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Leninskiy pr., 31, Moscow, Russia
| |
Collapse
|