1
|
Chen Z, Dong S, Wang M, Hu Z, Chen H, Han Y, Yuan D. Construction of 3D Hierarchical Co 3O 4@CoFe-LDH Heterostructures with Effective Interfacial Charge Redistribution for Rechargeable Liquid/Solid Zn-Air Batteries. Inorg Chem 2023; 62:2826-2837. [PMID: 36710494 DOI: 10.1021/acs.inorgchem.2c04154] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Constructing three-dimensional (3D) hierarchical heterostructures is an appealing but challenging strategy to improve the performance of catalysts for electrical energy devices. Here, an efficient and robust flexible self-supporting catalyst, interface coupling of ultrathin CoFe-LDH nanosheets and Co3O4 nanowire arrays on the carbon cloth (CC/Co3O4@CoFe-LDH), was proposed for boosting oxygen evolution reaction (OER) in rechargeable liquid/solid Zn-air batteries (ZABs). The strong interfacial interaction between the CoFe-LDH and Co3O4 heterostructures stimulated the charge redistribution in their coupling regions, which improved the electron conductivity and optimized the adsorption free energy of OER intermediates, ultimately boosting the intrinsic OER performance. Besides, the 3D hierarchical nanoarray structure facilitated the exposure of catalytically active centers and rapid electron/mass transfer during the OER process. As such, the CC/Co3O4@CoFe-LDH catalyst achieved excellent OER catalytic activity in alkaline medium, with a small overpotential of 237 mV at 10 mA cm-2, a low Tafel slope of 35.43 mV dec-1, and long-term durability of up to 48 h, significantly outperforming the commercial RuO2 catalyst. More impressively, the liquid and flexible solid-state ZABs assembled by the CC/Co3O4@CoFe-LDH hybrid catalyst as the OER catalyst presented a stable open circuit voltage, large power density, superb cycling life, and satisfactory flexibility, indicating great potential applications in energy technology. This work provides a good guidance for the development of advanced electrocatalysts with heterostructures and an in-depth understanding of electronic modulation at the heterogeneous interface.
Collapse
Affiliation(s)
- Zihao Chen
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Senjie Dong
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Minghui Wang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Zunpeng Hu
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Huiling Chen
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Ye Han
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266071 Shandong, P. R. China
| | - Ding Yuan
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| |
Collapse
|
2
|
Wang C, Jiu H, Zhang L, Song W, Zhang Y, Wei H, Xu Q, Qin Y, Che S, Guo Z. Heterostructured ZnCo 2O 4-CoOOH nanosheets on Ni foam for a high performance bifunctional alkaline water splitting catalyst. Dalton Trans 2022; 51:10061-10068. [PMID: 35726895 DOI: 10.1039/d2dt00641c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is of utmost importance to explore bifunctional electrocatalysts for water splitting. Herein, unique ZnCo2O4-CoOOH heterostructured ultrathin nanosheets on Ni foam are reported that combines a two-step hydrothermal method. This catalyst exhibits excellent catalytic performances to achieve a current density of 10 mA cm-2 with an ultralow overpotential of 115 mV for HER, attaining an overpotential of 238 mV at 20 mA cm-2 for OER. Remarkably, ZnCo2O4-CoOOH/Ni shows a voltage of 1.494 V to drive a current density of 10 mA cm-2. Such performances are due to the inter-penetrative pores present in the ultrathin nanosheets that provide large surface areas and expose massive active sites to enhance activities. In addition, the unique nanosheet structure and the 3D Ni foam substrate possess large specific surface areas, which can facilitate mass diffusion. This excellent performance is ascribed to the ZnCo2O4-CoOOH heterostructure that manipulates strong synergy to improve the electrochemical activity. This study offers new insight on an innovative approach for the exploitation of effective bifunctional electrocatalysts with a heterostructure.
Collapse
Affiliation(s)
- Congli Wang
- School of Science, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Hongfang Jiu
- School of Science, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Lixin Zhang
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan, 030051, People's Republic of China.,School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Wei Song
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Yufang Zhang
- School of Science, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Hao Wei
- School of Science, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Qianwen Xu
- School of Science, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Yaqi Qin
- School of Science, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Sicong Che
- School of Science, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Zhixin Guo
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, People's Republic of China.
| |
Collapse
|