1
|
Li B, Shi W, Du J, Zhang Y, Zhang H, Yang H, Sun L, Zhang Y, Li M. Structures and Single-Molecule Magnet Behavior of Dy 3 and Dy 4 Clusters Constructed by Different Dysprosium(III) Salts. Inorg Chem 2024; 63:15667-15678. [PMID: 39099326 DOI: 10.1021/acs.inorgchem.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Using the Schiff base ligand H2L-pyra (N'-(2-hydroxybenzoyl)pyrazine-2-carbohydrazonamide) with multiple dentate sites, the trinuclear DyIII-based complex [Dy3(HL-pyra)2(L-pyra)2(CH3COO)3]·2H2O (1) was synthesized. By analyzing the fragmented assembly process and fine-tuning the bridging anions, complex [Dy4(HL-pyra)2(L-pyra)4(NO3)2(H2O)2]·8H2O (2) with different nuclear numbers was successfully synthesized. Magnetic studies demonstrated that 1 did not exhibit magnetic relaxation behavior under the external field; however, 2 exhibited zero-field single-molecule magnetic relaxation behavior with an effective energy barrier (Ueff) of 197.44 K. This is attributed to the improved anisotropy of the single ion after the normalization of the crystal structure, thus realizing the molecular magnetic switching. Moreover, magnetic dilution analysis of 2 demonstrated that the weak magnetic interaction between metal ions inhibited the occurrence of quantum tunneling of magnetization (QTM), resulting in high-performance single-molecule magnet (SMM) behavior. The reasons for the magnetic difference between these two complexes were analyzed using ab initio calculation and magneto-structural correlations. This study provides a reasonable prediction of the ideal configuration of the approximately parallelogram DyIII-based SMMs, thus offering an effective approach for synthesizing Dy4 complexes with excellent properties.
Collapse
Affiliation(s)
- Botan Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Wandi Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jiyuan Du
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Yiyi Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Haibo Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Hengyu Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Lin Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yiquan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
- Department of Plastic and Reconstructive Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China
| |
Collapse
|
2
|
Miao L, Liu MJ, Zeng M, Kou HZ. Chiral Zn 3Ln 3 Hexanuclear Clusters of an Achiral Flexible Ligand. Inorg Chem 2023; 62:12814-12821. [PMID: 37535927 DOI: 10.1021/acs.inorgchem.3c01449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Multifunctional single-molecule magnets (SMMs) have sparked great interest, but chiral SMMs obtained via spontaneous resolution are rarely reported. We synthesized a series of chiral trinuclear hepta-coordinate lanthanide complexes [ZnII3LnIII3] (1 for Dy, 2 for Tb, 3 for Gd, and 4 for Dy0.07Y0.93) using the achiral flexible ligand H2L (2,2'-[1,2-ethanediylbis[(ethylimino)methylene]]bis[3,5-dimethylphenol]). The complexes crystallize in the chiral P63 group space, and two enantiomers of different chirality are spontaneously resolved. Three [Zn(L)Cl]- anions utilize the two phenoxy oxygen atoms of each L2- to coordinate with three lanthanide ions, respectively, and the three hepta-coordinate D5h lanthanide ions are arranged in a triangle. The chirality comes from the propeller arrangement of the peripheral three bidentate chelate L2- ligands like octahedral [M(AA)3]n+/- (M = transition metal ions; AA = bidentate chelate ligands, e.g., 2,2'-bipyridine, 1,10-phenathroline, ethylenediamine, acac- or oxalate). Complex 1 exhibits an AC susceptibility signal and is frequency-dependent, which is typical of SMMs. Complex 4, doped with a large amount of diamagnetic Y(III) in Dy(III), exhibits Ueff = 48.3 K and τ0 = 4.4 × 10-8 s in experiments. Complex 2 shows circularly polarized luminescence and apparent photoluminescence, typical of the f-f transitions of Tb(III).
Collapse
Affiliation(s)
- Lin Miao
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Mei-Jiao Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Min Zeng
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Hui-Zhong Kou
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
3
|
Mao PD, Zhang SH, Yao NT, Sun HY, Yan FF, Zhang YQ, Meng YS, Liu T. Regulating Magnetic Relaxations of Cyano-Bridged {Dy III Mo V } Systems by Tuning the N-Sites in β-Diketone Ligands. Chemistry 2023; 29:e202301262. [PMID: 37272418 DOI: 10.1002/chem.202301262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Cyano-bridged 4d-4f molecular nanomagnets have re-called increasing research interests in molecular magnetism since they offer more possibilities in achieving novel nanomagnets with versatile structures and magnetic interactions. In this work, four β-diketone ligands bearing different substitution N-sites were designed and synthesized, namely 1-(2-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL1 ), 1,3-Bis (3-pyridyl)-1,3-propanedione (HL2 ), 1-(4-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL3 ), and 1,3-Bis (4-pyridyl)-1,3-propanedione (HL4 ), to tune the magnetic relaxation behaviors of cyano-bridged {DyIII MoV } systems. By reacting with DyCl3 ⋅ 6H2 O and K4 Mo(CN)8 ⋅ 2H2 O, four cyano-bridged complexes, namely {[Dy[MoV (CN)8 ](HL1 )2 (H2 O)3 ]} ⋅ 6H2 O (1), {[Dy[MoV (CN)8 ](HL2 )(H2 O)3 (CH3 OH)]}2 ⋅ 2CH3 OH ⋅ 3H2 O (2), {[Dy[MoV (CN)8 ](HL3 )(H2 O)2 (CH3 OH)] ⋅ H2 O}n (3), and {[Dy[MoV (CN)8 ](HL4 )2 (H2 O)3 ]} ⋅ 2H2 O⋅CH3 OH (4) were obtained. Structural analyses revealed that 1 and 4 are binuclear complexes, 2 has a tetragonal structure, and 3 exhibits a stair-like polymer chain structure. The DyIII ions in all complexes have eight-coordinated configurations with the coordination spheres DyO7 N1 for 1 and 4, DyO6 N2 for 2, and DyO5 N3 for 3. Magnetic measurements indicate that 1 is a zero-field single-molecule magnet (SMM) and complexes 2-4 are field-induced SMMs, with complex 4 featuring a two-step relaxation process. The magnetic characterizations and ab initio calculations revealed that changing the N-sites in the β-diketone ligands can effectively alter the structures and magnetic properties of cyano-bridged 4d-4f nanomagnets by adjusting the coordination environments of the DyIII centers.
Collapse
Affiliation(s)
- Pan-Dong Mao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shi-Hui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fei-Fei Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
4
|
Wang J, Sun CY, Zheng Q, Wang DQ, Chen YT, Ju JF, Sun TM, Cui Y, Ding Y, Tang YF. Lanthanide Single-molecule Magnets: Synthetic Strategy, Structures, Properties and Recent Advances. Chem Asian J 2023; 18:e202201297. [PMID: 36802202 DOI: 10.1002/asia.202201297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Single-molecule magnets (SMMs) show wide potential applications in the field of ultrahigh-density storage materials, quantum computing, spintronics, and so on. Lanthanide (Ln) SMMs, as an important category of SMMs, open up a promising prospect due to their large magnetic moments and huge magnetic anisotropy. However, the construction of high performance for Ln SMMs remains an enormous challenge. Although remarkable advances are focused on the topic of Ln SMMs, the research on Ln SMMs with different nuclear numbers is still deficient. Therefore, this review summarizes the design strategies for the construction of Ln SMMs, as well as the metal skeleton types. Furthermore, we collect reported Ln SMMs with mononuclearity, dinuclearity, and multinuclearity (three or more Ln spin centers) and the SMM properties including energy barrier (Ueff ) and pre-exponential factor (τ0 ) are described. Finally, Ln SMMs with low-nuclearity SMMs, especially for single-ion magnets (SIMs), are highlighted to understand the correlations between structures and magnetic behavior of the detail SMM properties are described. We expect the review can shed light on the future developments of high-performance Ln SMMs.
Collapse
Affiliation(s)
- Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China.,Nantong Key Lab of Intelligent and New Energy Materials, Nantong, Jiangsu 226019, P. R. China
| | - Cheng-Yuan Sun
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Qi Zheng
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Dan-Qi Wang
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Yu-Ting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Jian-Feng Ju
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Tong-Ming Sun
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Ying Cui
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Yan Ding
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Yan-Feng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China.,Nantong Key Lab of Intelligent and New Energy Materials, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
5
|
Belov AS, Novikov VV, Vologzhanina AV, Pavlov AA, Bogomyakov AS, Zubavichus YV, Svetogorov RD, Zelinskii GE, Voloshin YZ. Synthesis, crystal polymorphism and spin crossover behavior of adamantylboron-capped cobalt(II) hexachloroclathrochelate and its transformation into the Co IIICo IICo III-bis-macrobicyclic derivative. Dalton Trans 2023; 52:347-359. [PMID: 36511081 DOI: 10.1039/d2dt03300c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Fast crystallization of the monoclathrochelate cobalt(II) intracomplex [Co(Cl2Gm)3(BAd)2] (where Cl2Gm2- is a dichloroglyoxime dianion and BAd is an adamantylboron capping group, 1), initially obtained by the direct template condensation of the corresponding chelating α-dioximate and cross-linking ligand synthons on the Co2+ ion as a matrix, from benzene or dichloromethane afforded its structural triclinic and hexagonal polymorphs. Its prolonged recrystallization from dichloromethane under air atmosphere and sunlight irradiation unexpectedly gave the crystals of the CoIIICoIICoIII-trinuclear dodecachloro-bis-clathrochelate intracomplex [[CoIII(Cl2Gm)3(BAd)]2CoII] (2), the molecule of which consists of two macrobicyclic frameworks with encapsulated low-spin (LS) Co3+ ions, which are cross-linked by a μ3-bridging Co2+ ion as a bifunctional Lewis-acidic center. The most plausible pathway of such a 1 → 2 transformation is based on the photoinitiated radical oxidation of dichloromethane with air oxygen giving the reactive species. Cobalt(II) monoclathrochelate 1 was found to undergo a temperature-induced spin crossover (SCO) both in its solutions and in the solid state. In spite of the conformational rigidity of the corresponding quasiaromatic diboron-capped tris-α-dioximate framework, the main parameters of this SCO transition (i.e., its completeness and gradual character) are strongly affected by the nature of the used solvent (in the case of its solutions) and by the structural polymorphism of its crystals (in the solid state). In the latter case, the LS state (S = 1/2) of this complex is more thermally stable and, therefore, the cobalt(II)-centered 1/2 → 3/2 SCO is more gradual than that in solutions.
Collapse
Affiliation(s)
- Alexander S Belov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Valentin V Novikov
- Moscow Institute of Physics and Technology, 141700 Moscow Region, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Alexander A Pavlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.,National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Artem S Bogomyakov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, 1 Nikolskii pr., 630559 Koltsovo, Russia
| | | | - Genrikh E Zelinskii
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Yan Z Voloshin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| |
Collapse
|
6
|
Dy3 and Gd3 Complexes with Dy3 Exhibiting Field-Induced Single-Molecule Magnet Behaviour. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|