1
|
Bertoncini B, Xiao Z, Zacchini S, Biancalana L, Gasser G, Marchetti F. Aminocarbyne-Alkyne Coupling in Diruthenium Complexes: Exploring the Anticancer Potential of the Resulting Vinyliminium Complexes and Comparison with Diiron Homologues. Inorg Chem 2024; 63:12485-12497. [PMID: 38912873 DOI: 10.1021/acs.inorgchem.4c01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
New diruthenium complexes based on the scaffold Ru2Cp2(CO)2 (Cp = η5-C5H5) and containing a bridging vinyliminium ligand, [2a-d]CF3SO3, were synthesized through regioselective coupling of alkynes with an aminocarbyne precursor (85-90% yields). The reaction involving phenylacetylene proceeded with the formation of a diruthenacyclobutene byproduct, [4]CF3SO3 (10% yield). Complexes [2a-d]+ undergo partial alkyne extrusion in contact with alumina or CDCl3. All products were characterized by elemental analysis, infrared and multinuclear NMR spectroscopy, and single crystal X-ray diffraction in two cases. Complexes [2a-d]+ revealed an outstanding stability in DMEM cell culture medium at 37 °C (<1% degradation over 72 h). These complexes exhibited cytotoxicity in human colon colorectal adenocarcinoma HT-29 cells in the low micromolar range, with lower IC50 values than those obtained with the homologous diiron complexes previously reported. Evaluation of ROS (reactive oxygen species) production and O2 consumption rate (OCR) highlighted the higher potential of Ru2 complexes, compared to the Fe2 counterparts, to impact mitochondrial activity, with the heterometallic Ru2-ferrocenyl complex [2d]+ showing the best performance.
Collapse
Affiliation(s)
- Benedetta Bertoncini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Zhimei Xiao
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via P. Gobetti 85, I-40129 Bologna, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
2
|
Bresciani G, Ciancaleoni G, Zacchini S, Biancalana L, Pampaloni G, Funaioli T, Marchetti F. Mixed valence triiron complexes from the conjugation of [Fe IFe I] and [Fe II] complexes via intermolecular carbyne/alkyne coupling. Dalton Trans 2024; 53:4299-4313. [PMID: 38345429 DOI: 10.1039/d4dt00079j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
We present a new synthetic strategy for obtaining mixed-valence triiron complexes where the metal centers are bridged by a novel, highly functionalized hydrocarbyl ligand. The alkynyl-vinyliminium complexes [Fe2Cp2(CO)(μ-CO){μ-η1:η3-C(X-CCH)CHCNMe2}]CF3SO3 (X = 4-C6H4, [2a1]CF3SO3; X = (CH2)3, [2a2]CF3SO3) were synthesized in almost quantitative yields from the aminocarbyne precursor [Fe2Cp2(CO)2(μ-CO){μ-CNMe2}]CF3SO3, [1a]CF3SO3, and the di-alkynes HCC-X-CCH. Then, the ferracycle [Fe(Cp)(CO){C(NMe2)CHC(4-C6H4CCH)C(O)}], 4a1, was produced in 47% yield from the cleavage of [2a1]CF3SO3 promoted by pyrrolidine. Subsequent reactions of the acetonitrile adducts [Fe2Cp2(CO)(μ-CO)(NCMe){μ-CNMe(R)}]CF3SO3 (R = Me, [1aACN]CF3SO3; R = Xyl, [1bACN]CF3SO3) ([FeIFeI]) with 4a1 ([FeII]) at room temperature resulted in the formation of [FeIFeIFeII] complexes [Fe2Cp2(CO)(μ-CO){μ-η1:η3-C(X-CCHC(NMe2)FeCp(CO)CO)CHCNMe(R)}]CF3SO3 (R = Me, [5a1]CF3SO3; R = Xyl, [5b1]CF3SO3) in yields ranging from 56% to 64%. The new products were characterized by IR and multinuclear NMR spectroscopy, and the structures of [2a2]CF3SO3 and 4a1 were confirmed by single crystal X-ray diffraction. Cyclic voltammetry and spectroelectrochemical studies on [5a1]+ have revealed that reduction and oxidation events occur almost independently at the [FeIFeI] and [FeII] units, respectively. This observation underscores a minimal electronic interaction between the two fragments within the triiron complex. Accordingly, DFT studies pointed out that the HOMO and LUMO orbitals are predominantly localized in the two distinct compartments of [5a1]+.
Collapse
Affiliation(s)
- Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Gianluca Ciancaleoni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry "Toso Montanari", Viale Risorgimento 4, I-40136 Bologna, Italy
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Tiziana Funaioli
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
- CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
3
|
Bresciani G, Cervinka J, Kostrhunova H, Biancalana L, Bortoluzzi M, Pampaloni G, Novohradsky V, Brabec V, Marchetti F, Kasparkova J. N-Indolyl diiron vinyliminium complexes exhibit antiproliferative effects in cancer cells associated with disruption of mitochondrial homeostasis, ROS scavenging, and antioxidant activity. Chem Biol Interact 2023; 385:110742. [PMID: 37802407 DOI: 10.1016/j.cbi.2023.110742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The indole scaffold has been established as a key organic moiety for developing new drugs; on the other hand, a range of diiron bis-cyclopentadienyl complexes have recently emerged for their promising anticancer potential. Here, we report the synthesis of novel diiron complexes with an indole-functionalized vinyliminium ligand (2-5) and an indole-lacking analogue for comparative purposes (6), which were characterized by analytical and spectroscopic techniques. Complexes 2-6 are substantially stable in DMSO‑d6 and DMEM-d solutions at 37 °C (8% average degradation after 48 h) and display a balanced hydrophilic/lipophilic behaviour (LogPow values in the range -0.32 to 0.47), associated with appreciable water solubility. The complexes display selective antiproliferative potency towards several cancer cells in monolayer cultures, mainly in the low micromolar range, with reduced toxicity towards noncancerous epithelial cells. Thus, the cytotoxicity of the complexes is comparable to or better than clinically used metallopharmaceutical cisplatin. Comparing the antiproliferative activity obtained for complexes containing different ligands, we confirmed the importance of the indolyl group in the mechanism of antiproliferative activity of these complexes. Cell-based mechanistic studies suggest that the investigated diiron vinyliminium complexes (DVCs) show cytostatic rather than cytotoxic effects and subsequently induce a population of cells to undergo apoptosis. Furthermore, the molecular mechanism of action involves interactions with mitochondrial DNA and proteins, the reactive oxygen species (ROS)-scavenging properties and antioxidant activity of these complexes in cancer cells. This study highlights the importance of DVCs to their cancer cell activity and reinforces their prospective therapeutic potential as anticancer agents.
Collapse
Affiliation(s)
- Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Jakub Cervinka
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic; Masaryk University, Faculty of Science, Department of Biochemistry, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Marco Bortoluzzi
- Ca' Foscari University of Venice, Department of Molecular Sciences and Nanosystems, Via Torino 155, I-30175, Mestre, Venezia, Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic; Department of Biophysics, Palacky University, Slechtitelu 27, CZ-78371, Olomouc, Czech Republic
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy.
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61200, Brno, Czech Republic.
| |
Collapse
|
4
|
Bresciani G, Vančo J, Funaioli T, Zacchini S, Malina T, Pampaloni G, Dvořák Z, Trávníček Z, Marchetti F. Anticancer Potential of Diruthenium Complexes with Bridging Hydrocarbyl Ligands from Bioactive Alkynols. Inorg Chem 2023; 62:15875-15890. [PMID: 37713240 PMCID: PMC10548421 DOI: 10.1021/acs.inorgchem.3c01731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Indexed: 09/16/2023]
Abstract
Diruthenacyclopentenone complexes of the general composition [Ru2Cp2(CO)2{μ-η1:η3-CH═C(C(OH)(R))C(═O)}] (2a-c; Cp = η5-C5H5) were synthesized in 94-96% yields from the reactions of [Ru2Cp2(CO)2{μ-η1:η3-C(Ph)═C(Ph)C(═O)}] (1) with 1-ethynylcyclopentanol, 17α-ethynylestradiol, and 17-ethynyltestosterone, respectively, in toluene at reflux. Protonation of 2a-c by HBF4 afforded the corresponding allenyl derivatives [Ru2Cp2(CO)3{μ-η1:η2-CH═C═R}]BF4 (3a-c) in 85-93% yields. All products were thoroughly characterized by elemental analysis, mass spectrometry, and IR, UV-vis, and nuclear magnetic resonance spectroscopy. Additionally, 2a and 3a were investigated by cyclic voltammetry, and the single-crystal diffraction method was employed to establish the X-ray structures of 2b and 3a. The cytotoxicity in vitro of 2b and 3a-c was evaluated against nine human cancer cell lines (A2780, A2780R, MCF-7, HOS, A549, PANC-1, Caco-2, PC-3, and HeLa), while the selectivity was assessed on normal human lung fibroblast (MRC-5). Overall, complexes exert stronger cytotoxicity than cisplatin, and 3b (comprising 17α-estradiol derived ligand) emerged as the best-performing complex. Inductively coupled plasma mass spectrometry cellular uptake studies in A2780 cells revealed a higher level of internalization for 3b and 3c compared to 2b, 3a, and the reference compound RAPTA-C. Experiments conducted on A2780 cells demonstrated a noteworthy impact of 3a and 3b on the cell cycle, leading to the majority of the cells being arrested in the G0/G1 phase. Moreover, 3a moderately induced apoptosis and oxidative stress, while 3b triggered autophagy and mitochondrial membrane potential depletion.
Collapse
Affiliation(s)
- Giulio Bresciani
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Ján Vančo
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Tiziana Funaioli
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University
of Bologna, Dipartimento di Chimica Industriale
“Toso Montanari”, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Tomáš Malina
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Guido Pampaloni
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Zdeněk Dvořák
- Department
of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779
00 Olomouc, Czech
Republic
| | - Zdeněk Trávníček
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Fabio Marchetti
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| |
Collapse
|
5
|
Bresciani G, Zacchini S, Pampaloni G, Bortoluzzi M, Marchetti F. Diiron Aminocarbyne Complexes with NCE− Ligands (E = O, S, Se). Molecules 2023; 28:molecules28073251. [PMID: 37050013 PMCID: PMC10096932 DOI: 10.3390/molecules28073251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
Diiron μ-aminocarbyne complexes [Fe2Cp2(NCMe)(CO)(μ-CO){μ-CN(Me)(R)}]CF3SO3 (R = Xyl, [1aNCMe]CF3SO3; R = Me, [1bNCMe]CF3SO3; R = Cy, [1cNCMe]CF3SO3; R = CH2Ph, [1dNCMe]CF3SO3), freshly prepared from tricarbonyl precursors [1a–d]CF3SO3, reacted with NaOCN (in acetone) and NBu4SCN (in dichloromethane) to give [Fe2Cp2(kN-NCO)(CO)(μ-CO){μ-CN(Me)(R)}] (R = Xyl, 2a; Me, 2b; Cy, 2c) and [Fe2Cp2(kN-NCS)(CO)(μ-CO){μ-CN(Me)(CH2Ph)}], 3 in 67–81% yields via substitution of the acetonitrile ligand. The reaction of [1aNCMe–1cNCMe]CF3SO3 with KSeCN in THF at reflux temperature led to the cyanide complexes [Fe2Cp2(CN)(CO)(μ-CO){μ-CNMe(R)}], 6a–c (45–67%). When the reaction of [1aNCMe]CF3SO3 with KSeCN was performed in acetone at room temperature, subsequent careful chromatography allowed the separation of moderate amounts of [Fe2Cp2(kSe-SeCN)(CO)(μ-CO){μ-CN(Me)(Xyl)}], 4a, and [Fe2Cp2(kN-NCSe)(CO)(μ-CO){μ-CN(Me)(Xyl)}], 5a. All products were fully characterized by elemental analysis, IR, and multinuclear NMR spectroscopy; moreover, the molecular structure of trans-6b was ascertained by single crystal X-ray diffraction. DFT calculations were carried out to shed light on the coordination mode and stability of the {NCSe-} fragment.
Collapse
Affiliation(s)
- Giulio Bresciani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Stefano Zacchini
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Marco Bortoluzzi
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
- Department of Molecular Science and Nanosystems, University of Venezia “Ca’ Foscari”, Via Torino 155, I-30170 Mestre, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
6
|
Zappelli C, Ciancaleoni G, Zacchini S, Marchetti F. Construction of Two-Faced (Hetero)hydrocarbyl Diiron Complexes Mediated by the Interplay of Ligands. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Adding Diversity to Diiron Aminocarbyne Complexes with Amine Ligands. INORGANICS 2023. [DOI: 10.3390/inorganics11030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The reactions of the diiron aminocarbyne complexes [Fe2Cp2(NCMe)(CO)(μ-CO){μ-CN(Me)(R)}]CF3SO3 (R = Me, 1aNCMe; R = Cy, 1bNCMe), freshly prepared from the tricarbonyl precursors 1a–b, with primary amines containing an additional function (i.e., alcohol or ether) proceeded with the replacement of the labile acetonitrile ligand and formation of [Fe2Cp2(NH2CH2CH2OR’)(CO)(μ-CO){μ-CN(Me)(R)}]CF3SO3 (R = Me, R’ = H, 2a; R = Cy, R’ = H, 2b; R = Cy, R’ = Me, 2c) in 81–95% yields. The diiron-oxazolidinone conjugate [Fe2Cp2(NH2OX)(CO)(μ-CO){μ-CN(Me)2}]CF3SO3, 3, was prepared from 1a, 3-(2-aminoethyl)-5-phenyloxazolidin-2-one (NH2OX) and Me3NO, and finally isolated in 96% yield. In contrast, the one pot reactions of 1a-b with NHEt2 in the presence of Me3NO gave the unstable [Fe2Cp2(NHEt2)(CO)(μ-CO){μ-CN(Me)(R)}]CF3SO3 (R = Me, 4a; R = Cy, 4b) as unclean products. All diiron complexes were characterized by analytical and spectroscopic techniques; moreover, the behavior of 2a–c and 3 in aqueous media was ascertained.
Collapse
|
8
|
Bresciani G, Zacchini S, Pampaloni G, Bortoluzzi M, Marchetti F. η 6-Coordinated ruthenabenzenes from three-component assembly on a diruthenium μ-allenyl scaffold. Dalton Trans 2022; 51:8390-8400. [PMID: 35587270 DOI: 10.1039/d2dt01071b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The room temperature reactions with internal alkynes, RCCR, of the μ-allenyl acetonitrile complex [Ru2Cp2(CO)2(NCMe){μ-η1:η2-C1HC2C3Me2}]BF4 (1-NCMe), freshly prepared from the tricarbonyl precursor [Ru2Cp2(CO)3{μ-η1:η2-C1HC2C3Me2}]BF4, 1, proceeded with alkyne insertion into ruthenium-allenyl bond and allenyl-CO coupling, affording compounds [Ru2Cp2(CO)2{μ-η2:η5-C(R)C(R)C1HC2(C3MeCH2)C(OH)}]BF4 (R = Ph, 2; R = CO2Me, 3; R = CO2Et, 4) in 83-94% yields. Deprotonation of 2-4 by triethylamine gave [Ru2Cp2(CO)2{μ-η2:η5-C(R)C(R)CHC(CMeCH2)C(O)}] (R = Ph, 5; R = CO2Me, 6; R = CO2Et, 7) in 75-88% yields, and 2-4 could be recovered upon HBF4·Et2O addition to 5-7. All the products, 2-7, were fully characterized by elemental analysis, IR and multinuclear NMR spectroscopy. The structure of 2 was ascertained by single crystal X-ray diffraction and investigated by DFT calculations, revealing a six-membered ruthenacycle with Shannon aromaticity index in line with related compounds. The formation of ruthenium-coordinated ruthenabenzenes from a preexistent diruthenium scaffold is a versatile but underdeveloped approach exploiting cooperative effects typical of a dimetallic core.
Collapse
Affiliation(s)
- Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy. .,CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry "Toso Montanari", Viale Risorgimento 4, I-40136 Bologna, Italy.,CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Guido Pampaloni
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy. .,CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Marco Bortoluzzi
- University of Venezia "Ca' Foscari", Department of Molecular Science and Nanosystems, Via Torino 155, I-30170 Mestre (VE), Italy.,CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy. .,CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
9
|
Bresciani G, Zacchini S, Pampaloni G, Marchetti F. Carbon–Carbon Bond Coupling of Vinyl Molecules with an Allenyl Ligand at a Diruthenium Complex. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Giulio Bresciani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, Pisa I-56124, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna I-40136, Italy
| | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, Pisa I-56124, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, Pisa I-56124, Italy
| |
Collapse
|
10
|
Biancalana L, Fiaschi M, Ciancaleoni G, Pampaloni G, Zanotti V, Zacchini S, Marchetti F. A Comparative Structural and Spectroscopic Study of Diiron and Diruthenium Isocyanide and Aminocarbyne Complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|