1
|
Yang M, Li J, Hui K, Ying J, Tian A. The applications of Keggin-based metal-organic compounds in sensing and catalysis. Dalton Trans 2024; 53:15412-15420. [PMID: 39162704 DOI: 10.1039/d4dt01894j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Environmental pollution and energy problems caused by excessive use of fossil fuels deviate from the theme of green and sustainable development. It is very promising to detect small molecules or catalyze the conversion of pollutants to obtain renewable energy by using photoelectric technology. Therefore, there is an urgent requirement to develop materials with low detection limits and high catalytic performance. Keggin polyoxometalate-based metal-organic compounds (POMOCs) hold great promise for sensing, and catalytic applications due to their controllable structure, remarkable reversible multi-electron transfer capability and multi-component synergistic activity. In this review, the applications of Keggin POMOCs in photocatalytic/electrocatalytic conversion of energy materials and the detection of metal ion/inorganic molecule are introduced. The different mechanisms of Keggin POM units and MOF units in sensors and catalysis are discussed. Additionally, the prospects of the Keggin POMOCs as electrode materials or catalysts for enhancing the performance of sensors and catalysts are discussed, which will provide a platform for further development of advanced Keggin POMOC material-based sensors and catalytic systems.
Collapse
Affiliation(s)
- Mengle Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Jiaxing Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Kaili Hui
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| |
Collapse
|
2
|
Liu CL, Moussawi MA, Kalandia G, Salazar Marcano DE, Shepard WE, Parac-Vogt TN. Cavity-Directed Synthesis of Labile Polyoxometalates for Catalysis in Confined Spaces. Angew Chem Int Ed Engl 2024; 63:e202401940. [PMID: 38408301 DOI: 10.1002/anie.202401940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
The artificial microenvironments inside coordination cages have gained significant attention for performing enzyme-like catalytic reactions by facilitating the formation of labile and complex molecules through a "ship-in-a-bottle" approach. Despite many fascinating examples, this approach remains scarcely explored in the context of synthesizing metallic clusters such as polyoxometalates (POMs). The development of innovative approaches to control and influence the speciation of POMs in aqueous solutions would greatly advance their applicability and could ultimately lead to the formation of elusive clusters that cannot be synthesized by using traditional methods. In this study, we employ host-guest stabilization within a coordination cage to enable a novel cavity-directed synthesis of labile POMs in aqueous solutions under mild conditions. The elusive Lindqvist [M6O19]2- (M=Mo or W) POMs were successfully synthesized at room temperature via the condensation of molybdate or tungstate building blocks within the confined cavity of a robust and water-soluble Pt6L4(NO3)12 coordination cage. Importantly, the encapsulation of these POMs enhances their stability in water, rendering them efficient catalysts for environmentally friendly and selective sulfoxidation reactions using H2O2 as a green oxidant in a pure aqueous medium. The approach developed in this paper offers a means to synthesize and stabilize the otherwise unstable metal-oxo clusters in water, which can broaden the scope of their applications.
Collapse
Affiliation(s)
- Cui-Lian Liu
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Mhamad Aly Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Givi Kalandia
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | | | - William E Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190, Saint-Aubin, France
| | | |
Collapse
|
3
|
Liu S, He Y, Ma X, Liu J, Ma P, Wang J, Niu J. Synthesis and Structure of High-Nuclearity Carboxylate-Modified Heteropolyoxovanadate Serving as a Heterogeneous Catalyst for Selective Oxidation of Alkylbenzenes. Inorg Chem 2023; 62:18384-18390. [PMID: 37906517 DOI: 10.1021/acs.inorgchem.3c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A high-nuclearity carboxylic-modified heteropolyoxovanadate, Na2K10H15[P8VIV24(tart)15(H2O)15(OH)O51]·58H2O [1, tart = C4H2O6], has been successfully synthesized by a conventional aqueous method under mild conditions. The crystallographic study reveals that compound 1 crystallizes in the tetragonal I41/a space group and is composed by a trilayer saddle-like polyoxoanion {P8V24}. Two {V3(tart)(H2O)O11} as linking units bridge the top {P4VIV9(tart)7(H2O)4(OH)O23} and the bottom {P4VIV9(tart)6(H2O)9O22} layers via tartrate ligands and {PO4} tetrahedra, resulting in a 24-nuclearity POV skeleton structure. More interestingly, compound 1 serves as a heterogeneous catalyst for the selective oxidation of diphenylmethanes with 96.2% conversion and 93.6% selectivity under the optimized conditions.
Collapse
Affiliation(s)
- Siyu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Yuzan He
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Xinyi Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jiayu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
4
|
Li Y, Li X, An Z, Chu Y, Wang X. A Metal-Organic Complex Constructed from Co(II), Azo-amide-pyridyl and Benzenetricarboxylate Mixed Ligands: Efficient Catalysis for Selective Oxidation of Benzyl Alcohols to Benzyl Acids. Chem Asian J 2023:e202300814. [PMID: 37881156 DOI: 10.1002/asia.202300814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
By using one-step hydrothermal synthesis, a novel metal-organic complex containing Co(II), the azo-amide-pyridyl ligand (E)-4,4'-(diazene-1,2-diyl)bis(N-(pyridin-3-yl)benzamide (DABA) and benzenetricarboxylate was synthesized, with a molecular formula of [Co2 (DABA)0.5 (MTC)(μ3 -OH)(H2 O)2 ] ⋅ 2H2 O (namely 1, DABA=(E)-4,4'-(diazene-1,2-diyl)bis(N-(pyridin-3-yl)benzamide, H3 MTC=1,2,4-benzenetricarboxylic acid) which was characterized by single crystal X-ray diffraction, PXRD, IR spectroscopy, TGA, and XPS. In the structure of complex 1, tetranuclear Co(II) clusters were connected by MTC to form a 2D bilayer structure and further constructed a 3D structure with DABA ligand. Complex 1 was used as an efficient heterogeneous catalyst for the oxidation of benzyl alcohol, and the conversion rate of benzyl alcohol reached 98.6 % and the selectivity of benzoic acid reached 94.8 %. In addition, complex 1 can be reused 5 times without significant loss of activity. The oxidation of benzyl alcohol with different substituents also showed satisfactory conversion and selectivity, indicating that complex 1 had good catalytic performance.
Collapse
Affiliation(s)
- Yuyao Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, P. R. China
| | - Xiaohui Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, P. R. China
| | - Zhixuan An
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, P. R. China
| | - Yang Chu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, P. R. China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, P. R. China
| |
Collapse
|
5
|
|
6
|
Chen Y, Liu G, Lu X, Wang X. A water-stable new luminescent Cd(Ⅱ) coordination polymer for rapid and luminescent/visible sensing of vanillin in infant formula. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|