Li J, Wei C, Han Y, Hu C. Recent advances in oxidative catalytic applications of polyoxovanadate-based inorganic-organic hybrids.
Dalton Trans 2023;
52:12582-12596. [PMID:
37646095 DOI:
10.1039/d3dt02249h]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Polyoxovanadates (POVs) have received widespread attention in catalytic applications due to their various structures and remarkable redox properties. By introducing a second transition metal, POV-based inorganic-organic hybrid (POVH) catalysts show increasing stability and more catalytic active sites compared with pure POVs. In this perspective article, POVH materials as oxidative catalysts have been classified into two main categories according to the interactions between transition metal-complex units and POV clusters: (i) hybrids with metal-organic units act as isolated cations and (ii) hybrids with an organic ligand coordinate to the second transition metal, which is further linked to a POV cluster via oxygen bridges directly or indirectly to give zero-, one-, two- or three-dimensional supramolecular structures. The oxidative conversion of organic compounds, including thiophene derivatives, thioethers, alkanes, alcohols, and alkenes, and oxidative detoxification of a sulfur mustard simulant or degradation of lignin, along with the oxidative photo/electrocatalytic transformation of organic compounds catalyzed by POVH materials, are discussed in detail. Furthermore, the challenges and prospects toward the development of POVH catalysts are explored briefly from our perspectives.
Collapse