1
|
Chatterjee J, Chatterjee A, Tanwar R, Panwaria P, Saikia S, Ambhore MD, Mandal P, Hazra P. Activation of TADF in Photon Upconverting Crystals of Dinuclear Cu(I)-Iodide Complexes by Ligand Engineering. J Phys Chem Lett 2024; 15:6069-6080. [PMID: 38820068 DOI: 10.1021/acs.jpclett.4c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
This work reports that ligand engineering can modulate the triplet harvesting mechanism in iodide-bridged rhombic Cu2I2 complexes. Complex-1, with a smaller Cu-Cu distance, exhibits phosphorescence from 3(M+X)LCT and 3CC states with 66% quantum yield, whereas an increased Cu-Cu distance in complex-2 results in a switch of the emission from phosphorescence to TADF, which occurs via 1/3(M+X)LCT states with 83% quantum yield. The TADF property of complex-2 has been utilized for the fabrication of a pc-LED emitting efficient warm white light. Moreover, the high charge-transfer nature of these complexes leads to the emergence of third-harmonic generation (THG). Interestingly, complex-1 exhibits efficient third-harmonic generation with a χ(3) value of 1.15 × 10-18 m2 V-2 and LIDT value of 14.73 GW/cm2. This work aims to provide a structure-property relationship to achieve effective harvestation of triplet excitons in iodide-bridged rhombic Cu2I2 complexes and their effective utilization in OLED device fabrication and nonlinear photon upconversion processes.
Collapse
Affiliation(s)
- Joy Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune-411008, Maharashtra, India
| | - Abhijit Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune-411008, Maharashtra, India
| | - Riteeka Tanwar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune-411008, Maharashtra, India
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune-411008, Maharashtra, India
| | - Sajid Saikia
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune-411008, Maharashtra, India
| | - Madan D Ambhore
- Department of Chemistry, Yeshwant Mahavidyalaya Nanded, Nanded, PIN-431602, Maharashtra, India
| | - Pankaj Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune-411008, Maharashtra, India
| | - Partha Hazra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune-411008, Maharashtra, India
| |
Collapse
|
2
|
Yan M, Lu W, Zhang B, Liu C, Zi X, Zhang J, Qi C, Liu M, Du C. Mononuclear copper(Ⅰ) complexes with mechanochromic thermally activated delayed fluorescence behaviour based on switchable hydrogen bonds. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Gusev A, Kiskin M, Braga E, Zamnius E, Kryukova M, Karaush-Karmazin N, Baryshnikov G, Minaev B, Linert W. Structure and emission properties of dinuclear copper(i) complexes with pyridyltriazole. RSC Adv 2023; 13:3899-3909. [PMID: 36756544 PMCID: PMC9890518 DOI: 10.1039/d2ra06986e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
A new series of five highly emissive binuclear heteroleptic pyridyltriazole-Cu(i)-phosphine complexes 1-5 was synthesized and examined by different experimental (IR, elemental and thermogravimetric analysis, single crystal X-ray diffraction technique, UV-vis and fluorescence spectroscopy) and quantum chemical aproaches. Complexes 1-5 exhibited excellent stimuli-responsive photoluminescent performance in the solid state at room temperature (quantum yield (QY) = 27.5-52.0%; lifetime (τ) = 8.3-10.7 μs) and when the temperature was lowered to 77 K (QY = 38.3-88.2; τ = 17.8-134.7 μs). The highest QY was examined for complex 3 (52%) that can be explained by the small structural changes between the ground S0 and exited S1 and T1 states leading to the small S1-T1 triplet gap and efficient thermally-activated delayed fluorescence. Moreover, complex 4 demonstrates reversible mechanochromic and excitation dependent luminescence.
Collapse
Affiliation(s)
- Alexey Gusev
- V.I. Vernadsky Crimean Federal University Simferopol 295007 Crimea
| | - Mikhail Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow119991Russia
| | - Elena Braga
- V.I. Vernadsky Crimean Federal University Simferopol 295007 Crimea
| | | | - Mariya Kryukova
- Institute of Chemistry, Saint Petersburg State UniversityUniversitetskaya Nab. 7/9Saint PetersburgRussia
| | - Nataliya Karaush-Karmazin
- Department of Chemistry and Nanomaterials Science, Bohdan Khmelnytsky National University18031 CherkasyUkraine
| | - Glib Baryshnikov
- Department of Chemistry and Nanomaterials Science, Bohdan Khmelnytsky National University18031 CherkasyUkraine,Laboratory of Organic Electronics, Department of Science and Technology, Linköping UniversitySE-60174 NorrköpingSweden
| | - Boris Minaev
- Department of Chemistry and Nanomaterials Science, Bohdan Khmelnytsky National University18031 CherkasyUkraine
| | - Wolfgang Linert
- Institute of Applied Physics, Vienna University of TechnologyWiedner Hauptstraße 8-101040 ViennaAustria
| |
Collapse
|
4
|
Yin X, Liu C, Liu S, Cao M, Rawson JM, Xu Y, Zhang B. Structural characterization and luminescence properties of trigonal Cu( i) iodine/bromine complexes comprising cation–π interactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj00318j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trigonal copper(i) complexes comprising cation–π interactions achieve satisfactory photoluminescence properties.
Collapse
Affiliation(s)
- Xiaolin Yin
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chunmei Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuang Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Mengmeng Cao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jeremy M. Rawson
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Yan Xu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|