1
|
Duan J, Zhang Q, Du J, Liu X, Wu S, Liao S. ZnS QDs Stabilized Concurrently with Glutathione and L-cysteine for Highly Sensitive Determining Adriamycin Based on the Fluorescence Enhancement Mechanism. J Fluoresc 2023:10.1007/s10895-023-03452-4. [PMID: 37831353 DOI: 10.1007/s10895-023-03452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
In this work, a facile and fast aqueous-phase synthetic method is proposed to prepare water-soluble ZnS quantum dots stabilized simultaneously with glutathione and L-cysteine (ZnS QDs-GSH/L-Cys). As-synthesized ZnS QDs-GSH/L-Cys were monodispersed spherical nanocrystals with a mean diameter of 5.0 ± 0.7 nm. Besides, the obtained ZnS QDs-GSH/L-Cys emitted more intensive blue fluorescence and exhibited an improved stability in aqueous solution compared with ZnS quantum dots merely stabilized with GSH (ZnS QDs-GSH). Interestingly, Adriamycin, a representative anticancer drug, was added into the solution of ZnS QDs-GSH/L-Cys, the blue fluorescence of ZnS QDs-GSH/L-Cys was greatly enhanced instead of being quenched, which indicated that ZnS QDs-GSH/L-Cys can be used as an enhanced-fluorescence nanoprobe for determining Adriamycin. The observed fluorescent enhancement could be attributed to the blocking of photoinduced electron transfer (PET) in ZnS QDs-GSH/L-Cys due to the electrostatic interaction between the -COO- groups on the surface of quantum dots and the -NH3+ groups in Adriamycin, followed by the coordination interaction among ZnS QDs-GSH/L-Cys and Adriamycin. The fluorescence intensity of ZnS QDs-GSH/L-Cys presented a good linear response with the concentration of Adriamycin ranging from 2.0 to 20 µg•mL-1. The proposed fluorescent nanoprobe exhibited an excellent sensitivity with the LOD of 0.1 µg•mL-1 and a good accuracy for detecting Adriamycin.
Collapse
Affiliation(s)
- Jingyi Duan
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Qikun Zhang
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Juan Du
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Xinyu Liu
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Shengmei Wu
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Shenghua Liao
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.
| |
Collapse
|
2
|
A Tesla Valve as a Micromixer for Fe3O4 Nanoparticles. Processes (Basel) 2022. [DOI: 10.3390/pr10081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A large number of microfluidic applications are based on effective mixing. In the application of water purification, the contaminated water needs to be effectively mixed with a solution that is loaded with nanoparticles. In this work, the Tesla valve was used as a micromixer device in order to evaluate the effect of this type of geometry on the mixing process of two streams. For this reason, several series of simulations were performed in order to achieve an effective mixing of iron oxide nanoparticles and contaminated water in a duct. In the present work, a stream loaded with Fe3O4 nanoparticles and a stream with contaminated water were numerically studied for various inlet velocity ratios and initial concentrations between the two streams. The Navier–Stokes equations were solved for the water flow and the discrete motion of particles was evaluated by the Lagrangian method. Results indicate that the Tesla valve can be used as a micromixer since mixing efficiency reached up to 63% for Vp/Vc = 20 under various inlet nanoparticles rates for the geometry of the valve that was used in this study.
Collapse
|