1
|
Azzouz A, Dewez D, Benghaffour A, Hausler R, Roy R. Role of Clay Minerals in Natural Media Self-Regeneration from Organic Pollution-Prospects for Nature-Inspired Water Treatments. Molecules 2024; 29:5108. [PMID: 39519749 PMCID: PMC11547395 DOI: 10.3390/molecules29215108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pollution from organic molecules is a major environmental issue that needs to be addressed because of the negative impacts of both the harmfulness of the molecule structures and the toxicity that can spread through natural media. This is mainly due to their unavoidable partial oxidation under exposure to air and solar radiation into diverse derivatives. Even when insoluble, the latter can be dispersed in aqueous media through solvatation and/or complexation with soluble species. Coagulation-flocculation, biological water treatments or adsorption on solids cannot result in a total elimination of organic pollutants. Chemical degradation by chlorine and/or oxygen-based oxidizing agents is not a viable approach due to incomplete mineralization into carbon dioxide and other oxides. A more judicious strategy resides in mimicking natural oxidation under ambient conditions. Soils and aqueous clay suspensions are known to display adsorptive and catalytic properties, and slow and complete self-regeneration can be achieved in an optimum time frame with a much slower pollution throughput. A deep knowledge of the behavior of aluminosilicates and of oxidizing species in soils and aquatic media allows us to gain an understanding of their roles in natural oxidative processes. Their individual and combined contributions will be discussed in the present critical analysis of the reported literature.
Collapse
Affiliation(s)
- Abdelkrim Azzouz
- Nanoqam, Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (D.D.); (A.B.); (R.R.)
- Department of Construction Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada;
| | - David Dewez
- Nanoqam, Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (D.D.); (A.B.); (R.R.)
| | - Amina Benghaffour
- Nanoqam, Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (D.D.); (A.B.); (R.R.)
| | - Robert Hausler
- Department of Construction Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada;
| | - René Roy
- Nanoqam, Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (D.D.); (A.B.); (R.R.)
- Glycosciences and Nanomaterials Laboratory, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
2
|
Azzouz A, Arus VA, Platon N. Role of Clay Substrate Molecular Interactions in Some Dairy Technology Applications. Int J Mol Sci 2024; 25:808. [PMID: 38255881 PMCID: PMC10815404 DOI: 10.3390/ijms25020808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The use of clay materials in dairy technology requires a multidisciplinary approach that allows correlating clay efficiency in the targeted application to its interactions with milk components. For profitability reasons, natural clays and clay minerals can be used as low-cost and harmless food-compatible materials for improving key processes such as fermentation and coagulation. Under chemical stability conditions, clay materials can act as adsorbents, since anionic clay minerals such as hydrotalcite already showed effectiveness in the continuous removal of lactic acid via in situ anion exchange during fermentation and ex situ regeneration by ozone. Raw and modified bentonites and smectites have also been used as adsorbents in aflatoxin retention and as acidic species in milk acidification and coagulation. Aflatoxins and organophilic milk components, particularly non-charged caseins around their isoelectric points, are expected to display high affinity towards high silica regions on the clay surface. Here, clay interactions with milk components are key factors that govern adsorption and surface physicochemical processes. Knowledge about these interactions and changes in clay behavior according to the pH and chemical composition of the liquid media and, more importantly, clay chemical stability is an essential requirement for understanding process improvements in dairy technology, both upstream and downstream of milk production. The present paper provides a comprehensive review with deep analysis and synthesis of the main findings of studies in this area. This may be greatly useful for mastering milk processing efficiency and envisaging new prospects in dairy technology.
Collapse
Affiliation(s)
- Abdelkrim Azzouz
- NanoQam, Department of Chemistry, University of Quebec, Montréal, QC H3C 3P8, Canada
- Station Expérimentale des Procédés Pilotes Environnementaux (STEPPE), École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada
| | - Vasilica Alisa Arus
- Catalysis and Microporous Materials Laboratory, Vasile-Alecsandri University of Bacau, 600115 Bacău, Romania; (V.A.A.); (N.P.)
| | - Nicoleta Platon
- Catalysis and Microporous Materials Laboratory, Vasile-Alecsandri University of Bacau, 600115 Bacău, Romania; (V.A.A.); (N.P.)
| |
Collapse
|
3
|
Benghaffour A, Azzouz A, Dewez D. Ecotoxicity of Diazinon and Atrazine Mixtures after Ozonation Catalyzed by Na + and Fe 2+ Exchanged Montmorillonites on Lemna minor. Molecules 2023; 28:6108. [PMID: 37630359 PMCID: PMC10459125 DOI: 10.3390/molecules28166108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The toxicity of two pesticides, diazinon (DAZ) and atrazine (ATR), before and after montmorillonite-catalyzed ozonation was comparatively investigated on the duckweed Lemna minor. The results allowed demonstrating the role of clay-containing media in the evolution in time of pesticide negative impact on L. minor plants. Pesticides conversion exceeded 94% after 30 min of ozonation in the presence of both Na+ and Fe2+ exchanged montmorillonites. Toxicity testing using L. minor permitted us to evaluate the change in pesticide ecotoxicity. The plant growth inhibition involved excessive oxidative stress depending on the pesticide concentration, molecular structure, and degradation degree. Pesticide adsorption and/or conversion by ozonation on clay surfaces significantly reduced the toxicity towards L. minor plants, more particularly in the presence of Fe(II)-exchanged montmorillonite. The results showed a strong correlation between the pesticide toxicity towards L. minor and the level of reactive oxygen species, which was found to depend on the catalytic activity of the clay minerals, pesticide exposure time to ozone, and formation of harmful derivatives. These findings open promising prospects for developing a method to monitor pesticide ecotoxicity according to clay-containing host-media and exposure time to ambient factors.
Collapse
Affiliation(s)
- Amina Benghaffour
- NanoQAM, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
| | - Abdelkrim Azzouz
- NanoQAM, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
- École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
| | - David Dewez
- NanoQAM, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
4
|
Boudissa F, Arus VA, Foka-Wembe EN, Zekkari M, Ouargli-Saker R, Dewez D, Roy R, Azzouz A. Role of Silica on Clay-Catalyzed Ozonation for Total Mineralization of Bisphenol-A. Molecules 2023; 28:molecules28093825. [PMID: 37175235 PMCID: PMC10179811 DOI: 10.3390/molecules28093825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Catalytic ozonation for the total mineralization of bisphenol-A (BPA) from aqueous solution was investigated in the presence of various silica-based catalysts such as mesoporous silica, acid-activated bentonite (HMt) and montmorillonite-rich materials (Mt) ion-exchanged with Na+ and Fe2+ cations (NaMt and Fe(II)Mt). The effects of the catalyst surface were studied by correlating the hydrophilic character and catalyst dispersion in the aqueous media to the silica content and BPA conversion. To the best of our knowledge, this approach has barely been tackled so far. Acid-activated and iron-free clay catalysts produced complete BPA degradation in short ozonation times. The catalytic activity was found to strongly depend on the hydrophilic character, which, in turn, depends on the Si content. Catalyst interactions with water and BPA appear to promote hydrophobic adsorption in high Si catalysts. These findings are of great importance because they allow tailoring silica-containing catalyst properties for specific features of the waters to be treated.
Collapse
Affiliation(s)
- Farida Boudissa
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
| | - Vasilica-Alisa Arus
- Catalysis and Microporous Materials Laboratory, Vasile Alecsandri University of Bacau, 600115 Bacau, Romania
| | - Eric-Noel Foka-Wembe
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
| | - Meriem Zekkari
- Department of Materials Engineering, University of Science and Technology, El M'naouer, B.P. 1505, Bir El Djir, Oran 31000, Algeria
| | - Rachida Ouargli-Saker
- Department of Materials Engineering, University of Science and Technology, El M'naouer, B.P. 1505, Bir El Djir, Oran 31000, Algeria
| | - David Dewez
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
| | - René Roy
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
| | - Abdelkrim Azzouz
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
- École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
| |
Collapse
|
5
|
Clay-Catalyzed Ozonation of Organic Pollutants in Water and Toxicity on Lemna minor: Effects of Molecular Structure and Interactions. Molecules 2022; 28:molecules28010222. [PMID: 36615416 PMCID: PMC9822386 DOI: 10.3390/molecules28010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The use of clays as adsorbents and catalysts in the ozonation of organic pollutants (Atrazine, bis-Phenol A, Diazinon, and Diclofenac sodium) allowed simulating their natural oxidative degradation in clay soils and to evaluate the ecotoxicity of mixtures partially oxidized on the species Lemna minor, a biodiversity representative of plants in the aquatic environment. Kinetic data showed that the adsorption of organic pollutants on clay particles obeys the pseudo-second-order model, while the adsorption isotherms satisfactorily fit the Langmuir model. Adsorption reduces the dispersion of the organic pollutant in the environment and prolongs its persistence and its natural degradation probability. Measurements of the Zeta potential and particle size as a function of pH demonstrate that the catalytic activity of clay depends on its cation, its silica/alumina ratio, and therefore on its permanent and temporary ion exchange capacities. These factors seem to govern its delamination and dispersion in aqueous media, its hydrophilic-hydrophobic character, and its porosity. Tests conducted on Lemna minor in contact with ozonation mixtures revealed that the toxicity could be due to pH decrease and to the toxicity of the intermediates yielded. Ecotoxicity would depend on the structure of the organic molecules, the chemical composition of the clay surface and ozonation time, which determines the oxidation progress. These results are of great importance for further research because they allow concluding that the negative impact of the persistence of an organic molecule in clay-containing media depends on the type and composition of the very clay mineral.
Collapse
|
6
|
Clay-Catalyzed Ozonation of Hydrotalcite-Extracted Lactic Acid Potential Application for Preventing Milk Fermentation Inhibition. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196502. [PMID: 36235039 PMCID: PMC9572240 DOI: 10.3390/molecules27196502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
An unprecedented route for mitigating the inhibitory effect of lactic acid (LA) on milk fermentation was achieved through lactate adsorption on hydrotalcite (Ht) from simulated lactate extracts. During its regeneration by ozonation, Ht displayed catalytic activity that appeared to increase by addition of montmorillonite (Mt). Changes in the pH, Zeta potential and catalyst particle size during LA ozonation were found to strongly influence LA–LA, LA–catalyst and catalyst–catalyst interactions. The latter determine lactate protonation–deprotonation and clay dispersion in aqueous media. The activity of Mt appears to involve hydrophobic adsorption of non-dissociated LA molecules on silica-rich areas at low pH, and Lewis acid–base and electrostatic interactions at higher pH than the pKa. Hydrotalcite promotes both hydrophobic interaction and anion exchange. Hydrotalcite–smectite mixture was found to enhance clay dispersion and catalytic activity. This research allowed demonstrating that natural clay minerals can act both as adsorbents for LA extract from fermentation broths and as catalysts for adsorbent regeneration. The results obtained herein provide valuable and useful findings for envisaging seed-free milk clotting in dairy technologies.
Collapse
|