1
|
Łaski P, Bosman L, Drapała J, Kamiński R, Szarejko D, Borowski P, Roodt A, Henning R, Brink A, Jarzembska KN. Nanosecond-Lived Excimer Observation in a Crystal of a Rhodium(I) Complex via Time-Resolved X-ray Laue Diffraction. J Phys Chem Lett 2024; 15:10301-10306. [PMID: 39382182 PMCID: PMC11492376 DOI: 10.1021/acs.jpclett.4c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
The rare observation of transient Rh···Rh excimer formation in a single crystal is reported. The estimated excited-state lifetime at 100 K is 2 ns, which makes it the shortest-lived small-molecule species caught experimentally using the laser-pump/X-ray-probe time-resolved Laue method. Upon excitation with 390 nm laser light, the intermolecular Rh···Rh distance decreases from 3.379(4) to 3.19(1) Å, and the metal-metal contact gains more bonding character. On the basis of the experimental results and theoretical modeling, the structural changes determined with 100 ps time resolution reflect principally the S0 → S1 electronic transition.
Collapse
Affiliation(s)
- Piotr Łaski
- Department
of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Lerato Bosman
- Department
of Chemistry, University of the Free State, Nelson Mandela Drive, Bloemfontein 9301, South Africa
| | - Jakub Drapała
- Department
of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Radosław Kamiński
- Department
of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Dariusz Szarejko
- Department
of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Patryk Borowski
- Department
of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Andreas Roodt
- Department
of Chemistry, University of the Free State, Nelson Mandela Drive, Bloemfontein 9301, South Africa
| | - Robert Henning
- Center
for Advanced Radiation Sources, University
of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Alice Brink
- Department
of Chemistry, University of the Free State, Nelson Mandela Drive, Bloemfontein 9301, South Africa
| | | |
Collapse
|
2
|
de Jesus Velazquez-Garcia J, Basuroy K, Wong J, Demeshko S, Meyer F, Kim I, Henning R, Staechelin YU, Lange H, Techert S. Out-of-equilibrium dynamics of a grid-like Fe(ii) spin crossover dimer triggered by a two-photon excitation. Chem Sci 2024; 15:13531-13540. [PMID: 39183926 PMCID: PMC11339940 DOI: 10.1039/d4sc02933j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The application of two-photon excitation (TPE) in the study of light-responsive materials holds immense potential due to its deeper penetration and reduced photodamage. Despite these benefits, TPE has been underutilised in the investigation of the photoinduced spin crossover (SCO) phenomenon. Here, we employ TPE to delve into the out-of-equilibrium dynamics of a SCO FeII dimer of the form [FeII(HL)2]2(BF4)4·2MeCN (HL = 3,5-bis{6-(2,2'-bipyridyl)}pyrazole). Optical transient absorption (OTA) spectroscopy in solution proves that the same dynamics take place under both one-photon excitation (OPE) and TPE. The results show the emergence of the photoinduced high spin state in less than 2 ps and with a lifetime of 147 ns. Time-resolved photocrystallography (TRXRD) reveals a single molecular reorganisation within the first 500 ps following TPE. Additionally, variable temperature single crystal X-ray diffraction (VTSCXRD) and magnetic susceptibility measurements confirm that the thermal transition is silenced by the solvent. While the results of the OTA and TRXRD utilising TPE are intriguing, the high pump fluencies required to excite enough metal centres to the high spin state may impair its practical application. Nonetheless, this study sheds light on the potential of TPE for the investigation of the out-of-equilibrium dynamics of SCO complexes.
Collapse
Affiliation(s)
| | - Krishnayan Basuroy
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
| | - Joanne Wong
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 Göttingen 37077 Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 Göttingen 37077 Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 Göttingen 37077 Germany
| | - Insik Kim
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory 9700 South Cass Ave Lemont Illinois 90439 USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory 9700 South Cass Ave Lemont Illinois 90439 USA
| | - Yannic U Staechelin
- Institute of Physical Chemistry, Universität Hamburg Martin-Luther-King-Platz 6 Hamburg 20146 Germany
| | - Holger Lange
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg 22761 Hamburg Germany
- Institute of Physics and Astronomy, Universität Potsdam Karl-Liebknecht-Str. 24 14476 Potsdam Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
- Institut für Röntgenphysik, Georg-August-Universität Göttingen Friedrich-Hund-Platz 1 Göttingen 37077 Germany
| |
Collapse
|
3
|
Ren Z, Zhang F, Kang W, Wang C, Shin H, Zeng X, Gunawardana S, Bowatte K, Krauß N, Lamparter T, Yang X. Spin-Coupled Electron Densities of Iron-Sulfur Cluster Imaged by In Situ Serial Laue Diffraction. Chem 2024; 10:2103-2130. [PMID: 39170732 PMCID: PMC11335340 DOI: 10.1016/j.chempr.2024.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Iron-sulfur clusters are inorganic cofactors found in many proteins involved in fundamental biological processes. The prokaryotic DNA repair photolyase PhrB carries a four-iron-four-sulfur cluster ([4Fe4S]) in addition to the catalytic flavin adenine dinucleotide (FAD) and a second cofactor ribolumazine. Our recent study suggested that the [4Fe4S] cluster functions as an electron cache to coordinate two interdependent photoreactions of the FAD and ribolumazine. Here we report the crystallography observations of light-induced responses in PhrB using the cryo-trapping method and in situ serial Laue diffraction at room temperature. We capture strong signals that depict electron density changes arising from quantized electronic movements in the [4Fe4S] cluster. Our data reveal the mixed valence layers of the [4Fe4S] cluster due to spin coupling and their dynamic responses to light-induced redox changes. The quantum effects imaged by decomposition of electron density changes have shed light on the emerging roles of metal clusters in proteins.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
- Renz Research, Inc., Westmont, IL 60559, USA
- Lead contact
| | - Fan Zhang
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Weijia Kang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Cong Wang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Heewhan Shin
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiaoli Zeng
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Semini Gunawardana
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Kalinga Bowatte
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Vision Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Jiang Y, Hayes S, Bittmann S, Sarracini A, Liu LC, Müller-Werkmeister HM, Miyawaki A, Hada M, Nakano S, Takahashi R, Banu S, Koshihara SY, Takahashi K, Ishikawa T, Miller RJD. Direct observation of photoinduced sequential spin transition in a halogen-bonded hybrid system by complementary ultrafast optical and electron probes. Nat Commun 2024; 15:4604. [PMID: 38834600 DOI: 10.1038/s41467-024-48529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
A detailed understanding of the ultrafast dynamics of halogen-bonded materials is desired for designing supramolecular materials and tuning various electronic properties by external stimuli. Here, a prototypical halogen-bonded multifunctional material containing spin crossover (SCO) cations and paramagnetic radical anions is studied as a model system of photo-switchable SCO hybrid systems using ultrafast electron diffraction and two complementary optical spectroscopic techniques. Our results reveal a sequential dynamics from SCO to radical dimer softening, uncovering a key transient intermediate state. In combination with quantum chemistry calculations, we demonstrate the presence of halogen bonds in the low- and high-temperature phases and propose their role during the photoinduced sequential dynamics, underscoring the significance of exploring ultrafast dynamics. Our research highlights the promising utility of halogen bonds in finely tuning functional properties across diverse photoactive multifunctional materials.
Collapse
Affiliation(s)
- Yifeng Jiang
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Stuart Hayes
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Simon Bittmann
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Antoine Sarracini
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Lai Chung Liu
- Uncharted Software, 600-2 Berkeley St., Toronto, M5A 4J5, ON, Canada
| | | | - Atsuhiro Miyawaki
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Masaki Hada
- Tsukuba Research Center for Energy Materials Science, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Shinnosuke Nakano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Ryoya Takahashi
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Samiran Banu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Shin-Ya Koshihara
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kazuyuki Takahashi
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Tadahiko Ishikawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.
| | - R J Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada.
| |
Collapse
|
5
|
Velazquez-Garcia JDJ, Basuroy K, Storozhuk D, Wong J, Demeshko S, Meyer F, Henning R, Techert S. Structural dynamics of a thermally silent triiron(II) spin crossover defect grid complex. Dalton Trans 2023; 52:12224-12234. [PMID: 37656445 PMCID: PMC10498823 DOI: 10.1039/d3dt02067c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
The structural evolution of spin crossover (SCO) complexes during their spin transition at equilibrium and out-of-equilibrium conditions needs to be understood to enable their successful utilisation in displays, actuators and memory components. In this study, diffraction techniques were employed to study the structural changes accompanying the temperature increase and the light irradiation of a defect [2 × 2] triiron(II) metallogrid of the form [FeII3LH2(HLH)2](BF4)4·4MeCN (FE3), LH = 3,5-bis{6-(2,2'-bipyridyl)}pyrazole. Although a multi-temperature crystallographic investigation on single crystals evidenced that the compound does not exhibit a thermal spin transition, the structural analysis of the defect grid suggests that the flexibility of the grid, provided by a metal-devoid vertex, leads to interesting characteristics that can be used for intermolecular cooperativity in related thermally responsive systems. Time-resolved photocrystallography results reveal that upon excitation with a ps laser pulse, the defect grid shows the first two steps of the out-of-equilibrium process, namely the photoinduced and elastic steps, occurring at the ps and ns time scales, respectively. Similar to a previously reported [2 × 2] tetrairon(II) metallogrid, FE3 exhibits a local distortion of the entire grid during the photoinduced step and a long-range distortion of the lattice during the elastic step. Although the lifetime of the pure photoinduced high spin (HS) state is longer in the tetranuclear grid than in the defect grid, suggesting that the global nuclearity plays a crucial role for the lifetime of the photoinduced species, the influence of the co-crystalising solvent on the lifetime of the photoinduced HS state remains unknown. This study sheds light on the out-of-equilibrium dynamics of a thermally silent defect triiron SCO metallogrid.
Collapse
Affiliation(s)
| | - Krishnayan Basuroy
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Darina Storozhuk
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Joanne Wong
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße, 4, 37077, Göttingen, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße, 4, 37077, Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße, 4, 37077, Göttingen, Germany
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory, 9700 South Cass Ave, Lemont, Illinois, 90439, USA
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
| |
Collapse
|
6
|
Hertler PR, Lewis RA, Wu G, Hayton TW. Measuring Metal-Metal Communication in a Series of Ketimide-Bridged [Fe 2] 6+ Complexes. Inorg Chem 2023; 62:11829-11836. [PMID: 37462407 DOI: 10.1021/acs.inorgchem.3c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Reaction of Fe(acac)3 with 3 equiv of Li[N═C(R)Ph] (R = Ph, tBu) results in the formation of the [Fe2]6+ complexes, [Fe2(μ-N═C(R)Ph)2(N═C(R)Ph)4] (R = Ph, 1; tBu, 2), in low to moderate yields. Reaction of FeCl2 with 6 equiv of Li(N═C13H8) (HN═C13H8 = 9-fluorenone imine) results in the formation of [Li(THF)2]2[Fe(N═C13H8)4] (3) in good yield. Subsequent oxidation of 3 with ca. 0.8 equiv of I2 generates the [Fe2]6+ complex, [Fe2(μ-N═C13H8)2(N═C13H8)4] (4), along with free fluorenyl ketazine. Complexes 1, 2, and 4 were characterized by 1H NMR spectroscopy, X-ray crystallography, 57Fe Mössbauer spectroscopy, and SQUID magnetometry. The Fe-Fe distances in 1, 2, and 4 range from 2.803(7) to 2.925(1) Å, indicating that no direct Fe-Fe interaction is present in these complexes. The 57Fe Mössbauer spectra for complexes 1, 2, and 4 are all consistent with the presence of symmetry-equivalent high-spin Fe3+ centers. Finally, all three complexes exhibit a similar degree of antiferromagnetic coupling between the metal centers (J = -26 to -30 cm-1), as ascertained by SQUID magnetometry.
Collapse
Affiliation(s)
- Phoebe R Hertler
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Richard A Lewis
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
7
|
Basuroy K, Velazquez-Garcia JDJ, Storozhuk D, Henning R, Gosztola DJ, Thekku Veedu S, Techert S. Axial vs equatorial: Capturing the intramolecular charge transfer state geometry in conformational polymorphic crystals of a donor-bridge-acceptor dyad in nanosecond-time-scale. J Chem Phys 2023; 158:054304. [PMID: 36754826 PMCID: PMC10481388 DOI: 10.1063/5.0134792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Two conformational polymorphs of a donor-bridge-acceptor (D-B-A) dyad, p-(CH3)2N-C6H4-(CH2)2-(1-pyrenyl)/PyCHDMA, were studied, where the electron donor (D) moiety p-(CH3)2N-C6H4/DMA is connected through a bridging group (B), -CH2-CH2-, to the electron acceptor (A) moiety pyrene. Though molecular dyads like PyCHDMA have the potential to change solar energy into electrical current through the process of photoinduced intramolecular charge transfer (ICT), the major challenge is the real-time investigation of the photoinduced ICT process in crystals, necessary to design solid-state optoelectronic materials. The time-correlated single photon counting (TCSPC) measurements with the single crystals showed that the ICT state lifetime of the thermodynamic form, PyCHDMA1 (pyrene and DMA: axial), is ∼3 ns, whereas, for the kinetic form, PyCHDMA20 (pyrene and DMA: equatorial), it is ∼7 ns, while photoexcited with 375 nm radiation. The polymorphic crystals were photo-excited and subsequently probed with a pink Laue x-ray beam in time-resolved x-ray diffraction (TRXRD) measurements. The TRXRD results suggest that in the ICT state, due to electron transfer from the tertiary N-atom in DMA moiety to the bridging group and pyrene moiety, a decreased repulsion between the lone-pair and the bond-pair at N-atom induces planarity in the C-N-(CH3)2 moiety, in both polymorphs. The Natural Bond Orbital calculations and partial atomic charge analysis by Hirshfeld partitioning also corroborated the same. Although the interfragment charge transfer (IFCT) analysis using the TDDFT results showed that for the charge transfer excitation in both conformers, the electrons were transferred from the DMA moiety to mostly the pyrene moiety, the bridging group has little role to play in that.
Collapse
Affiliation(s)
- Krishnayan Basuroy
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Darina Storozhuk
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - David J. Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | | | | |
Collapse
|
8
|
Ren Z, Zhang F, Kang W, Wang C, Shin H, Zeng X, Gunawardana S, Bowatte K, Krau Ü N, Lamparter T, Yang X. Spin-Coupled Electron Densities of Iron-Sulfur Cluster Imaged by In Situ Serial Laue Diffraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523341. [PMID: 36711581 PMCID: PMC9882091 DOI: 10.1101/2023.01.09.523341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Iron-sulfur clusters are inorganic cofactors found in many proteins involved in fundamental biological processes including DNA processing. The prokaryotic DNA repair enzyme PhrB, a member of the protein family of cryptochromes and photolyases, carries a four-iron-four-sulfur cluster [4Fe4S] in addition to the catalytic cofactor flavin adenine dinucleotide (FAD) and a second pigment 6,7-dimethyl-8-ribityllumazine (DMRL). The light-induced redox reactions of this multi-cofactor protein complex were recently shown as two interdependent photoreductions of FAD and DMRL mediated by the [4Fe4S] cluster functioning as an electron cache to hold a fine balance of electrons. Here, we apply the more traditional temperature-scan cryo-trapping technique in protein crystallography and the newly developed technology of in situ serial Laue diffraction at room temperature. These diffraction methods in dynamic crystallography enable us to capture strong signals of electron density changes in the [4Fe4S] cluster that depict quantized electronic movements. The mixed valence layers of the [4Fe4S] cluster due to spin coupling and their dynamic responses to light illumination are observed directly in our difference maps between its redox states. These direct observations of the quantum effects in a protein bound iron-sulfur cluster have thus opened a window into the mechanistic understanding of metal clusters in biological systems.
Collapse
|
9
|
Velazquez-Garcia JDJ, Basuroy K, Storozhuk D, Wong J, Demeshko S, Meyer F, Henning R, Techert S. Short- vs. long-range elastic distortion: structural dynamics of a [2 × 2] tetrairon(II) spin crossover grid complex observed by time-resolved X-Ray crystallography. Dalton Trans 2022; 51:17558-17566. [PMID: 36315244 PMCID: PMC9749069 DOI: 10.1039/d2dt02638d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spin crossover complexes (SCO) are among the most studied molecular switches due to their potential use in displays, sensors, actuators and memory components. A prerequisite to using these materials is the understanding of the structural changes following the spin transition at out-of-equilibrium conditions. So far, out-of-equilibrium studies in SCO solids have been focused on mononuclear complexes, though a growing number of oligonuclear SCO complexes showing cooperative effects are being reported. Here, we use time-resolved pink Laue crystallography to study the out-of-equilibrium dynamics of a [2 × 2] tetranuclear metallogrid of the form [FeII4LMe4](BF4)4·2MeCN ([LMe]- = 4-methyl-3,5-bis{6-(2,2'-bipyridyl)}pyrazolate). The out-of-equilibrium spin state switching induced by a ps laser pulse demonstrates that the metallogrid exhibits a multi-step response similar to that reported for mononuclear complexes. Contrary to the mononuclear complexes, the metallogrid shows two types of elastic distortions at different time scales. The first is a short-range distortion that propagates over the entire Fe4 grid complex during the ps time scale, and it is caused by the rearrangement of the coordination sphere of the photo-switching ion and the constant feedback between strongly linked metal ions. The second is a long-range distortion caused by the anisotropic expansion of the lattice during the ns time scale, observed in mononuclear materials. The structural analysis demonstrates that the long-range prevails over the short-range distortion, inducing the largest deformation of both the entire grid and the coordination sphere of each metal ion. The present study sheds light on the out-of -equilibrium dynamics of a non-cooperative oligonuclear complex.
Collapse
Affiliation(s)
- Jose de Jesus Velazquez-Garcia
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, 22607, Germany.
| | - Krishnayan Basuroy
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, 22607, Germany.
| | - Darina Storozhuk
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, 22607, Germany.
| | - Joanne Wong
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, 37077, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, 37077, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, 37077, Germany
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory, 9700 South Cass Ave, Lemont, Illinois, 90439, USA
| | - Simone Techert
- Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, 22607, Germany.
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
| |
Collapse
|
10
|
Athira S, Mondal DJ, Shome S, Dey B, Konar S. Effect of intermolecular anionic interactions on spin crossover of two triple-stranded dinuclear Fe( ii) complexes showing above room temperature spin transition. Dalton Trans 2022; 51:16706-16713. [DOI: 10.1039/d2dt02115c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new Fe(ii)-based dinuclear triple helicates [Fe2L3]4+, displaying near room temperature spin transition have been synthesized and the effect of intermolecular interactions and co-operativity between metal centers on the SCO has been studied.
Collapse
Affiliation(s)
- S. Athira
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal By-pass Road, Bhauri, Madhya Pradesh-462066, India
| | - Dibya Jyoti Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal By-pass Road, Bhauri, Madhya Pradesh-462066, India
| | - Shraoshee Shome
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal By-pass Road, Bhauri, Madhya Pradesh-462066, India
| | - Bijoy Dey
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal By-pass Road, Bhauri, Madhya Pradesh-462066, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal By-pass Road, Bhauri, Madhya Pradesh-462066, India
| |
Collapse
|