Cino EA, Tieleman DP. Curvature-based sorting of eight lipid types in asymmetric buckled plasma membrane models.
Biophys J 2022;
121:2060-2068. [PMID:
35524412 DOI:
10.1016/j.bpj.2022.05.002]
[Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/02/2022] Open
Abstract
Curvature is a fundamental property of biological membranes and has essential roles in cellular function. Bending of membranes can be induced by their lipid and protein compositions, as well as peripheral proteins, such as those that make up the cytoskeleton. An important aspect of membrane function is the grouping of lipid species into microdomains, or rafts, which serve as platforms for specific biochemical processes. The fluid mosaic model of membranes has evolved to recognize the importance of curvature and leaflet asymmetry, and there are efforts towards evaluating their functional roles. This work investigates the effect of curvature on the sorting of lipids in buckled asymmetric bilayers containing eight lipid types, approximating an average mammalian plasma membrane, through coarse-grained (CG) molecular dynamics (MD) simulations with the Martini force field. The simulations reveal that i) leaflet compositional asymmetry can induce curvature asymmetry, ii) lipids are sorted by curvature to different extents, and iii) curvature-based partitioning trends show moderate to strong correlations with lipid molecular volumes and head to tail bead ratios, respectively. The findings provide unique insights into the role of curvature in membrane organization, and the curvature-based sorting trends should be useful references for later investigations, and potentially interpreting the functional roles of specific lipids.
Collapse