1
|
Wang H, Lei L, Zhou L, Zhou X, Qi D, Wang H, Chen K. Synthesis of basic amino acid-grafted lignin for use as a high-performance pigment dispersant. Int J Biol Macromol 2024:137068. [PMID: 39488306 DOI: 10.1016/j.ijbiomac.2024.137068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Lignin is a promising dispersant due to its hyperbranched polymer structure, low cost, renewability and abundant availability. However, its use is limited by its broad molecular weight distribution, inhomogeneity, and low content of hydrophilic functional groups. In this work, lignin was functionalized with alkaline amino acids (EHL-AA) to enhance water solubility and molecular weight uniformity. The results showed that EHL-AA significantly improved the dispersion of pigment Red 57:1 (P.R.57:1) in aqueous solutions, reducing the required dosage by 50 % compared to commercial small-molecule dispersants. Additionally, histidine modified lignin (EHL-His) exhibited superior stability for P.R.57:1 compared to commercial lignosulfonate (REAX 85A). Molecular dynamics simulations further revealed that showed that EHL-His had the highest electrostatic potential difference and the largest absolute value of negative ESP. The adsorption of EHL-His onto the P.R.57:1 surface followed the pseudo-second-order kinetic model and the Langmuir model, with EHL-His showing a higher Langmuir constant (b) than REAX 85A, indicating the strongest interaction with the pigment. In summary, this work advances pigment dispersion technology and promotes the high-value utilization of lignin.
Collapse
Affiliation(s)
- Huajian Wang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lei Lei
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Linxiang Zhou
- Zhejiang Electronic Information Products Inspection and Research Institute, Hangzhou 310007, China
| | - Xiaoya Zhou
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Huan Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Kai Chen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China.
| |
Collapse
|
2
|
Creteanu A, Lungu CN, Lungu M. Lignin: An Adaptable Biodegradable Polymer Used in Different Formulation Processes. Pharmaceuticals (Basel) 2024; 17:1406. [PMID: 39459044 PMCID: PMC11509946 DOI: 10.3390/ph17101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION LIG is a biopolymer found in vascular plant cell walls that is created by networks of hydroxylated and methoxylated phenylpropane that are randomly crosslinked. Plant cell walls contain LIG, a biopolymer with significant potential for usage in modern industrial and pharmaceutical applications. It is a renewable raw resource. The plant is mechanically protected by this substance, which may increase its durability. Because it has antibacterial and antioxidant qualities, LIG also shields plants from biological and chemical challenges from the outside world. Researchers have done a great deal of work to create new materials and substances based on LIG. Numerous applications, including those involving antibacterial agents, antioxidant additives, UV protection agents, hydrogel-forming molecules, nanoparticles, and solid dosage forms, have been made with this biopolymer. METHODS For this review, a consistent literature screening using the Pubmed database from 2019-2024 has been performed. RESULTS The results showed that there is an increase in interest in lignin as an adaptable biomolecule. The most recent studies are focused on the biosynthesis and antimicrobial properties of lignin-derived molecules. Also, the use of lignin in conjunction with nanostructures is actively explored. CONCLUSIONS Overall, lignin is a versatile molecule with multiple uses in industry and medical science.
Collapse
Affiliation(s)
- Andreea Creteanu
- Department of Pharmaceutical Technology, University of Medicine and Pharmacy Grigore T Popa, 700115 Iași, Romania;
| | - Claudiu N. Lungu
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| | - Mirela Lungu
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| |
Collapse
|
3
|
Das AK, Mitra K, Conte AJ, Sarker A, Chowdhury A, Ragauskas AJ. Lignin - A green material for antibacterial application - A review. Int J Biol Macromol 2024; 261:129753. [PMID: 38286369 DOI: 10.1016/j.ijbiomac.2024.129753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Lignin's antibacterial properties have become increasingly relevant due to the rise of microbial infectious diseases and antibiotic resistance. Lignin is capable of interacting electrostatically with bacteria and contains polyphenols that cause damage to their cell walls. These features make lignin a desirable material to exhibit antibacterial behavior. Therefore, lignin in antibacterial applications offers a novel approach to address the growing need for sustainable and effective antibacterial materials. Recent research has explored the incorporation of lignin in various biomedical applications, such as wound dressings, implants, and drug delivery systems, highlighting their potential as a sustainable alternative to synthetic antibacterial agents. Furthermore, the development of lignin-based nanomaterials with enhanced antimicrobial activity is an active area of research that holds great promise for the future. In this review, we have provided a summary of how lignin can be incorporated into different forms, such as composite and non-composite synthesis of antibacterial agents and their performances. The challenges and future considerations are also discussed in this review article.
Collapse
Affiliation(s)
- Atanu Kumar Das
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, SE- 90183 Umeå, Sweden.
| | - Kangkana Mitra
- Faculty of Pharmacy, University Grenoble Alpes, Grenoble 38400, France.
| | - Austin J Conte
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN 37996, USA
| | - Asim Sarker
- Dhaka Medical College Hospital, Dhaka 1000, Bangladesh
| | - Aysha Chowdhury
- Laboratory of Biophysics and Evolution, CBI, ESPCI, University PSL, CNRS, Paris, France
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee Institution of Agriculture, 2506 Jacob Dr, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
4
|
Wei J, Shao Y, Qiao S, Li A, Hou S, Zhang WB. Biomacromolecular Characterizations Using State-of-the-Art Quartz Crystal Microbalance with Dissipation. Anal Chem 2023; 95:16435-16446. [PMID: 37921449 DOI: 10.1021/acs.analchem.3c02499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Biomolecular characterization is essential in fields such as drug discovery, glycomics, and cell biology. This feature article focuses on the experimental use of quartz crystal microbalance with dissipation (QCM-D) as a powerful analytical technique to probe biological events ranging from biomacromolecular interactions and conformational changes of biomacromolecules to surface immobilization of biomacromolecules and cell morphological changes.
Collapse
Affiliation(s)
- Jingjing Wei
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Yu Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Shixin Qiao
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Aaron Li
- China Biolin Scientific AB, Shanghai 201203, P. R. China
| | - Shaogang Hou
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
5
|
Peng D, Shan J, Fan Z, Huang C, Chen H, Wu X. Mechanistic insights into the cinnamaldehyde modification of lignin for sustainable anti-fungal reagent. Int J Biol Macromol 2023; 249:125994. [PMID: 37506788 DOI: 10.1016/j.ijbiomac.2023.125994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
The limited anti-fungal activity of enzymatic hydrolysis lignin (EHL) has been a challenge in its direct application as a bamboo preservative. To address this issue, the cinnamaldehyde modification of EHL was carried out to introduce anti-fungal structures into the lignin matrix, effectively enhancing its anti-fungal activity. The results demonstrated that the minimal inhibitory concentrations of the modified lignin (EHL-DC) against Aspergillus niger significantly improved from 16 mg/mL to 1 mg/mL, with comparable enhancements in anti-fungal activity against other fungi. As a result of the modification, the EHL-DC is more prone to interact with fungal cell membranes, contributing to a roughened, shrunken hyphal surface and a decrease in mycelial biomass. Multiple characterization methods were employed to better grapple with the EHL-DC chemical changes. The nitrogen content increased from 2.3 % to 8.3 %, and alterations in elemental compositions further support the proposed reaction mechanism and its role in enhancing EHL's anti-fungal activity. This study offers novel insights into the high-value utilization of enzymatic hydrolysis lignin based on green chemistry principles.
Collapse
Affiliation(s)
- Dandan Peng
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China
| | - Jingqun Shan
- School of Finance, Zhejiang University of Finance and Economics, Hangzhou 310018, People's Republic of China
| | - Zhiwei Fan
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Haili Chen
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China.
| | - Xinxing Wu
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China; Microbes and Insects Control Institute of Bio-based Materials, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| |
Collapse
|
6
|
Zhang H, Yue F, Hu S, Qi H, Lu F. Nanolignin-based high internal phase emulsions for efficient protection of curcumin against UV degradation. Int J Biol Macromol 2023; 228:178-185. [PMID: 36529212 DOI: 10.1016/j.ijbiomac.2022.12.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
As an emulsifier, lignin exhibits excellent UV resistance on drug-loaded emulsion systems for drug delivery. However, due to the structural variation and complexity of lignins from various origins, their UV shielding performance varies with the techniques for lignin extraction, which impacts properties and the protection efficiency of lignin-based HIPEs (high internal phase emulsions). In this work, lignin nanoparticles, prepared from three lignin preparations of Eucalyptus, were used in HIPEs delivery systems to protect curcumin from degradation by UV radiation. Structures of the lignin preparations were characterized using 2D HSQC (heteronuclear single-quantum coherence) NMR (nuclear magnetic resonance), 31P NMR, and GPC (gel permeation chromatography). The residual curcumin level after 36 h UV exposure in the nanolignin-based HIPEs was over 72 %, much higher than that (< 10 % after 24 h UV exposure) in the oil phase without lignin, indicating that the nanolignin-based HIPEs with enhanced UV shielding ability protect curcumin better. Of the three lignin preparations, AL (alkali lignin), with the lowest molecular weight, highest contents of phenolic hydroxyl and carboxyl groups, and highest S/G ratio, displayed the best anti-UV radiation ability and the most uniform nanoparticle size.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fengxia Yue
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Songnan Hu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fachuang Lu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; DOE The Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA.
| |
Collapse
|
7
|
Chen M, Li Y, Liu H, Zhang D, Shi QS, Zhong XQ, Guo Y, Xie XB. High value valorization of lignin as environmental benign antimicrobial. Mater Today Bio 2023; 18:100520. [PMID: 36590981 PMCID: PMC9800644 DOI: 10.1016/j.mtbio.2022.100520] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Lignin is a natural aromatic polymer of p-hydroxyphenylpropanoids with various biological activities. Noticeably, plants have made use of lignin as biocides to defend themselves from pathogen microbial invasions. Thus, the use of isolated lignin as environmentally benign antimicrobial is believed to be a promising high value approach for lignin valorization. On the other hand, as green and sustainable product of plant photosynthesis, lignin should be beneficial to reduce the carbon footprint of antimicrobial industry. There have been many reports that make use of lignin to prepare antimicrobials for different applications. However, lignin is highly heterogeneous polymers different in their monomers, linkages, molecular weight, and functional groups. The structure and property relationship, and the mechanism of action of lignin as antimicrobial remains ambiguous. To show light on these issues, we reviewed the publications on lignin chemistry, antimicrobial activity of lignin models and isolated lignin and associated mechanism of actions, approaches in synthesis of lignin with improved antimicrobial activity, and the applications of lignin as antimicrobial in different fields. Hopefully, this review will help and inspire researchers in the preparation of lignin antimicrobial for their applications.
Collapse
Affiliation(s)
- Mingjie Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yan Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Huiming Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Dandan Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qing-Shan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xin-Qi Zhong
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiao-Bao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
8
|
Fabrication of flower-like Ag/lignin composites and application in antibacterial fabrics. Int J Biol Macromol 2022; 222:783-793. [PMID: 36174864 DOI: 10.1016/j.ijbiomac.2022.09.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
Abstract
The bacterial infection and its transmission pose a great threat to life and health, which leads to the urgent development of efficient and broad-spectrum antibacterial agents. Herein, Ag/lignin layered nanoflower (Ag/EHL-CM-0.05) was synthesized by using biomass lignin as reducing and capping agents and silver nitrate as precursor. The study showed that the size distribution of Ag NPs was uniform distribution and about 20-40 nm. The crystal surface of Ag NPs was Ag (111) surface. The minimum inhibitory concentration of Ag/EHL-CM-0.05 against E. coli and S. aureus was all 7.8 μg/mL, which was the lowest of other Ag/lignin antibacterial materials and reached a level nearly as polycationic antibacterial agents. The antibacterial mechanism suggested that Ag/EHL-CM-0.05 could release OH and Ag+, which could cause bacterial death. Finally, Ag/EHL-CM-0.05 was sprayed onto the viscose fabrics by liquid-phase spray deposition method. It was found that the inhibition zone diameter of modified viscose fabrics against E. coli and S. aureus only dropped about 0.16 cm on average after friction treatment and 0.32 cm on average after washing treatment. This work provides a new idea for the design and synthesize of efficient, broad-spectrum, and bio-compatible antibacterial agents, which has important social, economic, and environmental significance.
Collapse
|
9
|
Chen K, Zhou X, Wang D, Li J, Qi D. Synthesis and characterization of a broad-spectrum TiO2@lignin UV-protection agent with high antioxidant and emulsifying activity. Int J Biol Macromol 2022; 218:33-43. [DOI: 10.1016/j.ijbiomac.2022.06.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 01/08/2023]
|
10
|
Pei W, Deng J, Wang P, Wang X, Zheng L, Zhang Y, Huang C. Sustainable lignin and lignin-derived compounds as potential therapeutic agents for degenerative orthopaedic diseases: A systemic review. Int J Biol Macromol 2022; 212:547-560. [PMID: 35643155 DOI: 10.1016/j.ijbiomac.2022.05.152] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
Abstract
Lignin, the most abundant natural and sustainable phenolic compound in biomass, has exhibited medicinal values due to its biological activities decided by physicochemical properties. Recently, the lignin and its derivatives (such as lignosulfonates and lignosulfonate) have been proven efficient in regulating cellular process and the extracellular microenvironment, which has been regarded as the key factor in disease progression. In orthopaedic diseases, especially the degenerative diseases represented by osteoarthritis and osteoporosis, excessive activated inflammation has been proven as a key stage in the pathological process. Due to the excellent biocompatibility, antibacterial and antioxidative activities of lignin and its derivatives, they have been applied to stimulate cells and restore the uncoupling bone remodeling in the degenerative orthopaedic diseases. However, there is a lack of a systemic review to state the current research actuality of lignin and lignin-derived compounds in treating degenerative orthopaedic diseases. Herein, we summarized the current application of lignin and lignin-derived compounds in orthopaedic diseases and proposed their possible therapeutic mechanism in treating degenerative orthopaedic diseases. It is hoped this work could guide the future preparation of lignin/lignin-derived drugs and implants as available therapeutic strategies for clinically degenerative orthopaedic diseases.
Collapse
Affiliation(s)
- Wenhui Pei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Junping Deng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xucai Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Zheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Feng Y, Wang N, He T, He R, Chen M, Yang L, Zhang S, Zhu S, Zhao Q, Ma J, Chen S, Li J. Ag/Zn Galvanic Couple Cotton Nonwovens with Breath-Activated Electroactivity: A Possible Antibacterial Layer for Personal Protective Face Masks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59196-59205. [PMID: 34865481 DOI: 10.1021/acsami.1c15113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The water vapor exhaled by the human body can severely accelerate the charge dissipation of commercial face masks, thereby reducing the electrostatic adsorption efficiency and increasing the bacterial invasion risk. This study developed an electroactive antibacterial cotton nonwoven (Ag/cotton/Zn) using eco-friendly magnetron sputtering technology. The Ag/Zn electrode constructed on the surface of cotton nonwovens could produce a microelectric field in the moist environment of human respiration, which endowed Ag/cotton/Zn with excellent electroactivity. When Ag/cotton/Zn was used as an additional layer of polypropylene melt-blown nonwovens or polylactic acid nanofibers, the prepared personal protective air filter had a filtration efficiency of up to 96.8% and an appropriate pressure drop and air permeability. The antibacterial results based on bacterial aerosols showed that the antibacterial efficiency against Escherichia coli and Staphylococcus aureus in 20 min was 99.74 and 99.79%, respectively, indicating an excellent electroactive killing efficiency against airborne bacteria. In addition, Ag/cotton/Zn showed excellent biological security. These results shed some light on the design and fabrication of next generation of personal protective air filter materials driven by human breathing.
Collapse
Affiliation(s)
- Yujie Feng
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Na Wang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
- Shandong Center for Engineered Nonwovens, Qingdao 266071, P. R. China
| | - Tian He
- Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, 127 Siliu South Road, Qingdao 266042, P. R. China
| | - Ruidong He
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Meng Chen
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Liguo Yang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Shaohua Zhang
- Department of Pediatrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Shuaihang Zhu
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Qian Zhao
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Jianwei Ma
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Shaojuan Chen
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Jiwei Li
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
- Shandong Center for Engineered Nonwovens, Qingdao 266071, P. R. China
| |
Collapse
|
12
|
Zhao X, He F, Yu G, Feng Y, Li J. High-viscosity Pickering emulsion stabilized by amphiphilic alginate/SiO 2 via multiscale methodology for crude oil-spill remediation. Carbohydr Polym 2021; 273:118492. [PMID: 34560936 DOI: 10.1016/j.carbpol.2021.118492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/04/2021] [Accepted: 07/25/2021] [Indexed: 01/21/2023]
Abstract
The separation of crude oil from oily water and collection of the emulsion constituents has attracted significant attention. We demonstrate that the relationships between inherent dynamic factors and the performance of a Pickering emulsion stabilized by SiO2 particles with adsorbed hydrophobically modified sodium alginate derivatives (HMSA), a natural pH-sensitive polysaccharide, can be clarified via a multi-scale methodology. Functionalization of the silica surface with HMSA controls particle dispersibility, as verified by turbidity and stability analyses, the zeta potential, and transmission electron microscopy measurements. The interaction mechanism between HMSA and SiO2 nanoparticles was elucidated by both experimental adsorption measurements and computer simulations, which showed qualitative consistency. The aggregation/disaggregation of HMSA/SiO2 particles achieved by tuning the pH of the solution facilitated reversible dispersibility/collectability behavior. Overall, a high-viscosity Pickering emulsion system based on particle-particle and droplet-droplet interactions, which can be filtered for the recovery of spilled crude oil, was demonstrated.
Collapse
Affiliation(s)
- Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China.
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China.
| |
Collapse
|