1
|
Chen L, Xu W, Yang Z, McClements DJ, Peng X, Xu Z, Meng M, Zou Y, Chen G, Jin Z. Co-encapsulation of quercetin and resveratrol: Comparison in different layers of zein-carboxymethyl cellulose nanoparticles. Int J Biol Macromol 2024; 278:134827. [PMID: 39154680 DOI: 10.1016/j.ijbiomac.2024.134827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Three nanoparticles were fabricated for the co-delivery of quercetin and resveratrol. Nanoparticles consisted of a zein and carboxymethyl cellulose assembled using antisolvent precipitation/layer-by-layer deposition method. Nanoparticles contained quercetin in the core and resveratrol in the shell, resveratrol in the core and quercetin in the shell or both quercetin and resveratrol in the core. The particle sizes of nanoparticles were 280.4, 214.8, and 181.8 nm, respectively. Zeta-potential was about -50 mV and PDI was about 0.3. The different positions of polyphenol distribution nanoparticles could reduce the competition between the two polyphenols, the encapsulation rate, loading rate and storage stability reached up to 91.7 %, 5.37 % and 97.1 %, respectively. FT-IR showed that hydrophobic and electrostatic interactions were the main driving forces of nanoparticle assembly. XRD showed that two polyphenols were successfully encapsulated in nanoparticles. TGA showed that distributing the nanoparticles in different layers would enhance thermal stability. TEM and SEM showed that polysaccharides attached to the surface of nanoparticles formed a core-shell structure with uniform particle size. All three nanoparticles could release two polyphenols slowly in simulated gastrointestinal digestion, Korsmeyer-Peppas was the most suitable kinetic release model. Therefore, biopolymer-based nanocarriers can be created to enhance the loading, stability, and bioaccessibility of co-encapsulated nutraceuticals.
Collapse
Affiliation(s)
- Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China.
| | - Wen Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhongyu Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd., Zhongshan 528400, China
| | - Yidong Zou
- Yixing Skystone Feed Co., Ltd, Wuxi 214251, China
| | | | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
2
|
Zhang H, Zhang T, Huang X, Liu C, Ma S, Li S, Li Y, Liu J, Du Z, Yang M. Oral Synergism of Egg-White-Derived Peptides (EWDP) and Curcumin for Colitis Mitigation via Polysaccharide/Cyclodextrin Metal-Organic Framework-Based Assemblies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11140-11152. [PMID: 38703140 DOI: 10.1021/acs.jafc.4c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Recently, oral deliverable strategies of multiple nutraceuticals for ulcerative colitis (UC) mitigation have attracted increasing attention. This study aimed to fabricate facile oral assemblies loaded with egg-white-derived peptides (EWDP) and curcumin based on carboxymethyl chitosan (CMCS) and an γ-cyclodextrin metal-organic framework (MOF). Herein, outer CMCS could coassemble with EWDP (both nutraceuticals and building blocks) into cobweb-like fibrils to promote bridging with inner MOF via coordinative noncovalent interactions (hydrogen bonding, hydrophobic interaction, and electrostatic interaction). Compared with conventional γ-cyclodextrin/MOF-based composites, the above coassembly could also endow the biocompatible assemblies with superior nanoscale colloidal properties, processing applicability (curcumin storage stability, bioaccessibility, and aqueous solubility), and bioactivity. Moreover, the oral synergism of EWDP and curcumin (initially nonsynergistic) for UC mitigation was achieved by alleviating inflammatory damage and gut microbiota imbalance. Overall, the novel assemblies could be a promising amplifier and platform to facilitate oral formulations of various nutraceuticals for food processing and UC relief.
Collapse
Affiliation(s)
- Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xinyi Huang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunmei Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sitong Ma
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
3
|
Liu R, Wang X, Yang L, Wang Y, Gao X. Coordinated encapsulation by β-cyclodextrin and chitosan derivatives improves the stability of anthocyanins. Int J Biol Macromol 2023:125060. [PMID: 37245775 DOI: 10.1016/j.ijbiomac.2023.125060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/22/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
To improve the stability of anthocyanins (ACNs), ACNs were loaded into dual-encapsulated nanocomposite particles by self-assembly using β-cyclodextrin (β-CD) and two different water-soluble chitosan derivatives, namely, chitosan hydrochloride (CHC) and carboxymethyl chitosan (CMC). The ACN-loaded β-CD-CHC/CMC nanocomplexes with small diameters (333.86 nm) and had a desirable zeta potential (+45.97 mV). Transmission electron microscopy (TEM) showed that the ACN-loaded β-CD-CHC/CMC nanocomplexes had a spherical structure. Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (1H NMR) and X-ray diffraction (XRD) confirmed that the ACNs in the dual nanocomplexes were encapsulated in the cavity of the β-CD and that the CHC/CMC covered the outer layer of β-CD through noncovalent hydrogen bonding. The ACNs from the dual-encapsulated nanocomplexes improved stability of ACNs under adverse environmental conditions or in a simulated gastrointestinal environment. Further, the nanocomplexes exhibited good storage stability and thermal stability over a wide pH range when added into simulated electrolyte drinks (pH = 3.5) and milk tea (pH = 6.8). This study provides a new option for the preparation of stable ACNs nanocomplexes and expands the applications for ACNs in functional foods.
Collapse
Affiliation(s)
- Ranran Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaohan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lixia Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xueling Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Yang M, Liu J, Guo J, Yang X, Liu C, Zhang M, Li Y, Zhang H, Zhang T, Du Z. Tailoring the physicochemical stability and delivery properties of emulsions stabilized by egg white microgel particles via glycation: Role of interfacial particle network and digestive metabolites. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Yang M, Liu J, Li Y, Yang Q, Liu C, Liu X, Zhang B, Zhang H, Zhang T, Du Z. Co-encapsulation of Egg-White-Derived Peptides (EWDP) and Curcumin within the Polysaccharide-Based Amphiphilic Nanoparticles for Promising Oral Bioavailability Enhancement: Role of EWDP. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5126-5136. [PMID: 35412315 DOI: 10.1021/acs.jafc.1c08186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The comprehensive utilization of food-derived nutraceuticals with different polarities has been extremely restricted by their poor bioavailability and coexistence in a single system. This study aimed to fabricate a self-assembly of amphiphilic nanoparticles (NPs) for the hydrophilic EWDP and hydrophobic curcumin based on the carboxymethyl chitosan (CMCS) shell and γ-cyclodextrin (γ-CD) core. Notably, EWDP could cooperate with CMCS to yield superior colloidal properties with an excellent curcumin aqueous solubility and co-encapsulation capacity (>10%) for the NPs (pH 2.0-7.0). This phenomenon was mainly ascribed to the additional hydrogen-bonding network and hydrophobic interaction introduced by EWDP. Besides, the overall antioxidant activity, bioaccessibility, gastrointestinal stability, and Caco-2 cell absorption properties were significantly improved in the presence of EWDP (>20% increase). Therefore, EWDP could function as both a potential affinity agent and a nutrition enhancer to expand the co-delivery applications for diverse nutraceuticals with promising oral bioavailability enhancement in food and pharmaceutical areas.
Collapse
Affiliation(s)
- Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunmei Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Biying Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Liu J, Guo J, Zhang H, Liao Y, Liu S, Cheng D, Zhang T, Xiao H, Du Z. The fabrication, characterization, and application of chitosan-NaOH modified casein nanoparticles and their stabilized long-term stable high internal phase Pickering emulsions. Food Funct 2022; 13:1408-1420. [PMID: 35048100 DOI: 10.1039/d1fo02202d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The demand for facile delivery systems from natural biopolymers with long-term storage stability to deliver liposoluble nutraceuticals such as β-carotene (BC) is increasing. In this work, a facile and reliable emulsifier of chitosan (CS)-NaOH-modified casein (CA) nanoparticles (NPs) was fabricated for the stabilization of high internal phase Pickering emulsions (HIPPEs) with versatile stability. Dynamic light scattering, TEM, FTIR, and interface tension results indicated that CS-CA NPs exhibited nanoscale (109-373 nm), positive charge (22-38 mV), pH-response, spherical in shape, assembled spontaneously by non-covalent interactions, and high surface activity. Optical microscopy, confocal laser scanning microscopy (CLSM), and rheometer results demonstrated that HIPPEs were emulsified by a dense and compact 3D network between the continuous phase and the interfacial region. Hence, the CS-CA NP-stabilized HIPPEs showed long-term storage stability (over 18 months at ambient temperature) and thermostabilization (1 month at 80 °C). The robust and compact CS-CA NPs dramatically declined the contents of primary and secondary oxidation production in HIPPEs than that by corn oil. Moreover, CS-CA NPs stabilized HIPPEs appreciably enhanced the bioaccessibility (2.56 times) and chemical stability (thermal, UV-light, and storage) of BC. This research evidenced that CS-protein or polysaccharide-CA-based systems could be an encouraging formulation to commercially construct tunable HIPPEs with adorable stability for liposoluble nutraceuticals with enhanced attributes.
Collapse
Affiliation(s)
- Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Jian Guo
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Yinan Liao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Shuaiyan Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Dahao Cheng
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
7
|
Liu J, Liu S, Wu Y, Xu X, Li Q, Yang M, Gong A, Zhang M, Lu R, Du F. Curcumin doped zeolitic imidazolate framework nanoplatform as a multifunctional nanocarrier for tumor chemo/immunotherapy. Biomater Sci 2022; 10:2384-2393. [DOI: 10.1039/d2bm00149g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin as a hydrophobic polyphenol has great potential for tumor therapy, yet rapid degradation and hydrophobicity severely impair its therapeutic effect in the clinic. Herein, we report a novel strategy...
Collapse
|