1
|
Chen D, Lee YY, Tan CP, Wang Y, Qiu C. Pickering Foam Stabilized by Diacylglycerol-Based Solid Lipid Nanoparticles: Effect of Protein Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19480-19493. [PMID: 39171455 DOI: 10.1021/acs.jafc.4c05495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Pickering foams have great potential for applications in aerated foods, but their foaming ability and physical stability are still far from satisfactory. Herein, solid lipid particles (SLNs) were fabricated by using diacylglycerol of varying acyl chain lengths with modification by a protein. The SLNs showed different crystal polymorphisms and air-water interfacial activity. C14-DAG SLN with a contact angle ∼ 79° formed aqueous foam with supreme stability and high plasticity. Whey protein isolate and sodium caseinate (0.1 wt %) considerably enhanced the foamability and interfacial activity of SLNs and promoted the packing of particles at the bubble surface. However, high protein concentration caused foam destruction due to the competitive adsorption effect. β-sheet increased in protein after adsorption and changed the polymorphism and thermodynamic properties of SLN. The foam collapsing behaviors varied in the presence of protein. The results gave insights into fabricating ultrastable aqueous foams by using high-melting DAG particles. The obtained foams demonstrated good temperature sensitivity and plasticity, which showed promising application prospects in the food and cosmetic fields.
Collapse
Affiliation(s)
- Dechu Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43300 Serdang, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Yu Y, Chen D, Lee YY, Chen N, Wang Y, Qiu C. Physicochemical and In Vitro Digestion Properties of Curcumin-Loaded Solid Lipid Nanoparticles with Different Solid Lipids and Emulsifiers. Foods 2023; 12:foods12102045. [PMID: 37238863 DOI: 10.3390/foods12102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Curcumin-loaded solid lipid nanoparticles (Cur-SLN) were prepared using medium- and long chain diacylglycerol (MLCD) or glycerol tripalmitate (TP) as lipid matrix and three kinds of surfactants including Tween 20 (T20), quillaja saponin (SQ) and rhamnolipid (Rha). The MLCD-based SLNs had a smaller size and lower surface charge than TP-SLNs with a Cur encapsulation efficiency of 87.54-95.32% and the Rha-based SLNs exhibited a small size but low stability to pH decreases and ionic strength. Thermal analysis and X-ray diffraction results confirmed that the SLNs with different lipid cores showed varying structures, melting and crystallization profiles. The emulsifiers slightly impacted the crystal polymorphism of MLCD-SLNs but largely influenced that of TP-SLNs. Meanwhile, the polymorphism transition was less significant for MLCD-SLNs, which accounted for the better stabilization of particle size and higher encapsulation efficiency of MLCD-SLNs during storage. In vitro studies showed that emulsifier formulation greatly impacted on the Cur bioavailability, whereby T20-SLNs showed much higher digestibility and bioavailability than that of SQ- and Rha-SLNs possibly due to the difference in the interfacial composition. Mathematical modeling analysis of the membrane release further confirmed that Cur was mainly released from the intestinal phase and T20-SLNs showed a faster release rate compared with other formulations. This work contributes to a better understanding of the performance of MLCD in lipophilic compound-loaded SLNs and has important implications for the rational design of lipid nanocarriers and in instructing their application in functional food products.
Collapse
Affiliation(s)
- Yasi Yu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Dechu Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Nannan Chen
- Department of Nutrition and Food Hygiene, Guangzhou Medical University, Guangzhou 511436, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| |
Collapse
|
3
|
Zhang H, Wu S, Chen W, Hu Y, Geng Z, Su J. Bone/cartilage targeted hydrogel: Strategies and applications. Bioact Mater 2023; 23:156-169. [PMID: 36406248 PMCID: PMC9661677 DOI: 10.1016/j.bioactmat.2022.10.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
The skeletal system is responsible for weight-bearing, organ protection, and movement. Bone diseases caused by trauma, infection, and aging can seriously affect a patient's quality of life. Bone targeted biomaterials are suitable for the treatment of bone diseases. Biomaterials with bone-targeted properties can improve drug utilization and reduce side effects. A large number of bone-targeted micro-nano materials have been developed. However, only a few studies addressed bone-targeted hydrogel. The large size of hydrogel makes it difficult to achieve systematic targeting. However, local targeted hydrogel still has significant prospects. Molecules in bone/cartilage extracellular matrix and bone cells provide binding sites for bone-targeted hydrogel. Drug delivery systems featuring microgels with targeting properties is a key construction strategy for bone-targeted hydrogel. Besides, injectable hydrogel drug depot carrying bone-targeted drugs is another strategy. In this review, we summarize the bone-targeted hydrogel through application environment, construction strategies and disease applications. We hope this article will provide a reference for the development of bone-targeted hydrogels. We also hope this article could increase awareness of bone-targeted materials. Introducing the microenvironment and target molecules in different parts of long bones. Summarizing the construction strategy of micro/nanoparticle hydrogel with bone targeting properties. Summarizing the construction strategy of hydrogel based depot carrying bone-targeted drugs. Reporting the application and effect of bone targeting hydrogel in common bone diseases.
Collapse
|
4
|
Sakellari GI, Zafeiri I, Batchelor H, Spyropoulos F. Solid lipid nanoparticles and nanostructured lipid carriers of dual functionality at emulsion interfaces. Part I: Pickering stabilisation functionality. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Zhou J, Lee YY, Mao Y, Wang Y, Zhang Z. Future of Structured Lipids: Enzymatic Synthesis and Their New Applications in Food Systems. Foods 2022; 11:foods11162400. [PMID: 36010399 PMCID: PMC9407428 DOI: 10.3390/foods11162400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Structured lipids (SLs) refer to a new type of functional lipid obtained by modifying natural triacylglycerol (TAG) through the restructuring of fatty acids, thereby altering the composition, structure, and distribution of fatty acids attached to the glycerol backbones. Due to the unique functional characteristics of SLs (easy to absorb, low in calories, reduced serum TAG, etc.), there is increasing interest in the research and application of SLs. SLs were initially prepared using chemical methods. With the wide application of enzymes in industries and the advantages of enzymatic synthesis (mild reaction conditions, high catalytic efficiency, environmental friendliness, etc.), synthesis of SLs using lipase has aroused great interest. This review summarizes the reaction system of SL production and introduces the enzymatic synthesis and application of some of the latest SLs discussed/developed in recent years, including medium- to long-chain triacylglycerol (MLCT), diacylglycerol (DAG), EPA- and DHA-enriched TAG, human milk fat substitutes, and esterified propoxylated glycerol (EPG). Lastly, several new ways of applying SLs (powdered oil, DAG plastic fat, inert gas spray oil, and emulsion) in the future food industry are also highlighted.
Collapse
Affiliation(s)
- Jun Zhou
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Yilin Mao
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
- Correspondence:
| |
Collapse
|
6
|
Akbari J, Saeedi M, Ahmadi F, Hashemi SMH, Babaei A, Yaddollahi S, Rostamkalaei SS, Asare-Addo K, Nokhodchi A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm Dev Technol 2022; 27:525-544. [DOI: 10.1080/10837450.2022.2084554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mohammad Hassan Hashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sadra Yaddollahi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Sohrab Rostamkalaei
- Department of Pharmaceutics, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
- Medicinal Plant Research Center, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Iran, Amol.
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutical Research laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
7
|
Ebada HMK, Nasra MMA, Nassra RA, Abdallah OY. Chondroitin sulfate-functionalized lipid nanoreservoirs: a novel cartilage-targeting approach for intra-articular delivery of cassic acid for osteoarthritis treatment. Drug Deliv 2022; 29:652-663. [PMID: 35188017 PMCID: PMC8865121 DOI: 10.1080/10717544.2022.2041130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novel intra-articular nanoreservoirs were implemented employing different cartilage targeting approaches to improve cartilage bioavailability of a chondroprotective drug, cassic acid (CA), for effective amelioration of cartilage deterioration off-targeting CA gastrointestinal disorders. Herein, we compared active cartilage-targeting approach via chondroitin sulfate (CHS) functionalization versus passive targeting using positively charged nanoparticles to target negatively charged cartilage matrix. Firstly, CA integrated nanoreservoirs (CA-NRs) were fabricated based on ionic conjugation between CA and cationic hydrophobic surface modifier octadecylamine (ODA) and were further functionalized with CHS to develop CHS-CA-NRs. Confocal laser microscope was used to visualize the accumulation of nanoparticles into the cartilage tissue. Both targeting approaches promoted CA local cartilage availability and prolonged its residence time. Compared to passive targeted CA-NRs, active targeted CHS-CA-NRs showed higher fluorescence signals in proximity to and inside chondrocytes which lasted for up to 21 days. In MIA-osteoarthritic rats, CHS-CA-NRs showed superior antiosteoarthritic activity, exhibiting highest cartilage repair compared to CA-NRs. Additionally, CHS-CA-NRs significantly inhibited OA inflammatory cytokine, degradation enzyme and oxidative stress and improved cartilage matrix biosynthesis. Conclusively, CHS-CA-NRs improved OA repair showing a superior efficacy for articular cartilage targeting with CHS which could be a potential advance for OA therapy.
Collapse
Affiliation(s)
- Heba M K Ebada
- Central Lab, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Maha M A Nasra
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rasha A Nassra
- Department of Medical Biochemistery, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|