1
|
Palus K. Dietary Exposure to Acrylamide Has Negative Effects on the Gastrointestinal Tract: A Review. Nutrients 2024; 16:2032. [PMID: 38999779 PMCID: PMC11243272 DOI: 10.3390/nu16132032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Changing eating habits and an increase in consumption of thermally processed products have increased the risk of the harmful impact of chemical substances in food on consumer health. A 2002 report by the Swedish National Food Administration and scientists at Stockholm University on the formation of acrylamide in food products during frying, baking and grilling contributed to an increase in scientific interest in the subject. Acrylamide is a product of Maillard's reaction, which is a non-enzymatic chemical reaction between reducing sugars and amino acids that takes place during thermal processing. The research conducted over the past 20 years has shown that consumption of acrylamide-containing products leads to disorders in human and animal organisms. The gastrointestinal tract is a complex regulatory system that determines the transport, grinding, and mixing of food, secretion of digestive juices, blood flow, growth and differentiation of tissues, and their protection. As the main route of acrylamide absorption from food, it is directly exposed to the harmful effects of acrylamide and its metabolite-glycidamide. Despite numerous studies on the effect of acrylamide on the digestive tract, no comprehensive analysis of the impact of this compound on the morphology, innervation, and secretory functions of the digestive system has been made so far. Acrylamide present in food products modifies the intestine morphology and the activity of intestinal enzymes, disrupts enteric nervous system function, affects the gut microbiome, and increases apoptosis, leading to gastrointestinal tract dysfunction. It has also been demonstrated that it interacts with other substances in food in the intestines, which increases its toxicity. This paper summarises the current knowledge of the impact of acrylamide on the gastrointestinal tract, including the enteric nervous system, and refers to strategies aimed at reducing its toxic effect.
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 13, 10-718 Olsztyn, Poland
| |
Collapse
|
2
|
Lu J, Su D, Yang Y, Shu M, Wang Y, Zhou X, Yu Q, Li C, Xie J, Chen Y. Disruption of intestinal epithelial permeability in the Co-culture system of Caco-2/HT29-MTX cells exposed individually or simultaneously to acrylamide and ochratoxin A. Food Chem Toxicol 2024; 186:114582. [PMID: 38460668 DOI: 10.1016/j.fct.2024.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/13/2023] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Mycotoxins and thermal processing hazards are common contaminants in various foods and cause severe problems in terms of food safety and health. Combined use of acrylamide (AA) and ochratoxin A (OTA) would result in more significant intestinal toxicity than either toxin alone, but the underlying mechanisms behind this poor outcome remain unclear. Herein, we established the co-culture system of Caco-2/HT29-MTX cells for simulating a real intestinal environment that is more sensitive to AA and OTA, and showed that the combination of AA and OTA could up-regulate permeability of the intestine via increasing LY permeabilization, and decreasing TEER, then induce oxidative stress imbalance (GSH, SOD, MDA, and ROS) and inflammatory system disorder (TNF-α, IL-1β, IL-10, and IL-6), thereby leading a rapid decline in cell viability. Western blot, PAS- and AB-staining revealed that AA and OTA showed a synergistic effect on the intestine mainly through the disruption of tight junctions (TJs) and a mucus layer. Furthermore, based on correlation analysis, oxidative stress was more relevant to the mucus layer and TJs. Therefore, our findings provide a better evaluation model and a potential mechanism for further determining or preventing the combined toxicity caused by AA and OTA.
Collapse
Affiliation(s)
- Jiawen Lu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Dan Su
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Ying Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Mengni Shu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Chang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
3
|
Li W, Li H, Song J, Xing Y, Fang L, Wang X, Wu D, Min W. Mechanism of Intestinal Epithelial Absorption and Electrophysiological Regulation of the Shrimp Peptide QMDDQ. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:326-338. [PMID: 38155399 DOI: 10.1021/acs.jafc.3c05714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
We investigated the absorption mechanism of the shrimp peptide QMDDQ in small intestines, explored its physiological function in inhibiting neuronal hyperactivity, and verified its entry into the brain in vivo to display functional activity. The everted rat sac model and a Caco-2 paracellular absorption monolayer model were used, indicating that QMDDQ has a good absorption capacity with an apparent permeability coefficient (Papp) > 1 × 10-6 cm/s and the absorption of QMDDQ was concentration-dependent. When the concentration of QMDDQ was 1 mM and the transport time was 180 min, the highest absorption concentration of QMDDQ was 41.17 ± 3.48 μM (P < 0.05). The myosin light-chain kinase (MLCK)-specific inhibitor ML-7 and activator MPA, Western blotting, and immunofluorescence results showed that QMDDQ absorption takes place by mediating the MLCK-p-MLCK-MLC signaling pathway, reversibly opening the zonula occludens-1 (ZO-1), occludin in tight junctions (TJs), upregulating claudin-2 expression, and reaching targets through blood to inhibit neuronal overactivity. Results of fluorescence imaging in vivo verified that QMDDQ could enter the brain 4 h after oral administration. The results provide a theoretical foundation for the mechanism of paracellular absorption of active peptides and a starting point for the development of functional foods for Alzheimer's disease intervention.
Collapse
Affiliation(s)
- Weijia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P.R. China
| | - Haoming Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P.R. China
| | - Jiaqi Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P.R. China
| | - Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P.R. China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P.R. China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P.R. China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P.R. China
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, P.R. China
| |
Collapse
|
4
|
Su D, Lu J, Nie C, Guo Z, Li C, Yu Q, Xie J, Chen Y. Combined Effects of Acrylamide and Ochratoxin A on the Intestinal Barrier in Caco-2 Cells. Foods 2023; 12:foods12061318. [PMID: 36981244 PMCID: PMC10048136 DOI: 10.3390/foods12061318] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Acrylamide (AA) and ochratoxin A (OTA) are contaminants that co-exist in the same foods, and may create a serious threat to human health. However, the combined effects of AA and OTA on intestinal epithelial cells remain unclear. The purpose of this research was to investigate the effects of AA and OTA individually and collectively on Caco-2 cells. The results showed that AA and OTA significantly inhibited Caco-2 cell viability in a concentration- and time-dependent manner, decreased transepithelial electrical resistance (TEER) values, and increased the lucifer yellow (LY) permeabilization, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) levels. In addition, the levels of IL-1β, IL-6, and TNF-α increased, while the levels of IL-10 decreased after AA and OTA treatment. Western blot analysis revealed that AA and OTA damaged the intestinal barrier by reducing the expression of the tight junction (TJ) protein. The collective effects of AA and OTA exhibited enhanced toxicity compared to either single compound and, for most of the intestinal barrier function indicators, AA and OTA combined exposure tended to produce synergistic toxicity to Caco-2 cells. Overall, this research suggests the possibility of toxic reactions arising from the interaction of toxic substances present in foodstuffs with those produced during processing.
Collapse
Affiliation(s)
- Dan Su
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiawen Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Chunchao Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Ziyan Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Chang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
5
|
Yan F, Wang L, Zhao L, Wang C, Lu Q, Liu R. Acrylamide in food: Occurrence, metabolism, molecular toxicity mechanism and detoxification by phytochemicals. Food Chem Toxicol 2023; 175:113696. [PMID: 36870671 DOI: 10.1016/j.fct.2023.113696] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Acrylamide (ACR) is a common pollutant formed during food thermal processing such as frying, baking and roasting. ACR and its metabolites can cause various negative effects on organisms. To date, there have been some reviews summarizing the formation, absorption, detection and prevention of ACR, but there is no systematic summary on the mechanism of ACR-induced toxicity. In the past five years, the molecular mechanism for ACR-induced toxicity has been further explored and the detoxification of ACR by phytochemicals has been partly achieved. This review summarizes the ACR level in foods and its metabolic pathways, as well as highlights the mechanisms underlying ACR-induced toxicity and ACR detoxification by phytochemicals. It appears that oxidative stress, inflammation, apoptosis, autophagy, biochemical metabolism and gut microbiota disturbance are involved in various ACR-induced toxicities. In addition, the effects and possible action mechanisms of phytochemicals, including polyphenols, quinones, alkaloids, terpenoids, as well as vitamins and their analogs on ACR-induced toxicities are also discussed. This review provides potential therapeutic targets and strategies for addressing various ACR-induced toxicities in the future.
Collapse
Affiliation(s)
- Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
6
|
Characterization of procyanidin extracts from hawthorn (Crataegus pinnatifida) in human colorectal adenocarcinoma cell line Caco-2, simulated Digestion, and fermentation identified unique and novel prebiotic properties. Food Res Int 2023; 165:112393. [PMID: 36869464 DOI: 10.1016/j.foodres.2022.112393] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The health-promoting activities of procyanidin extracts from hawthorn (HPCs) are closely related to their digestive behaviors, absorption, and colonic metabolism, all of which remain unknown for now and thus hinder further exploration. This study aims to explore the dynamic changes of HPCs during in vitro digestion and fermentation, as well as their Caco-2 permeability, focusing mainly on the interaction between gut microbiota and HPCs. The results showed that the digested HPC samples had characteristic absorption peaks at 280 nm, and there were absorption peaks in the stretching vibration zone, including OH and CC on the benzene ring, which suggested that procyanidins were the main components in HPCs after in vitro digestion. Meanwhile, HPCs had the highest stability in the oral phase. However, the total procyanidin content of HPCs decreased during gastrointestinal digestion, and flavan-3-ol dimers and trimers in HPCs are partially degraded into epicatechin. Uptake of epicatechin (4.07 %), procyanidin B2 (2.15 %), and procyanidin B5 (39.44 %) through Caco-2 monolayer was also observed in HPC treatment, while there was still a large portion of procyanidins that was not absorbed. Subsequent fermentation resulted in a decrease in pH along with the production of short-chain fatty acids (SCFAs), mainly due to the degradation and utilization of HPC, as indicated by a reduction of total procyanidins. Furthermore, the HPCs modulated gut microbial populations: down-regulated the abundances of Bacteroides, Fusobacterium, Enterococcus, Parabacteroides, and Bilophila, and up-regulated Escherichia-Shigella, Klebsiella, Turicibacter, Actinobacillus, Roseburia, and Blautia. Ultimately, epicatechin and procyanidin B2, B5 and C1 were converted into phenolic acids through the metabolism of Bacteroides, Sutterella, Butyrobacter and Blautia. 4-ethylbenzoic acid, 4-hydroxyphenylpropionic acid, 3,4-dihydroxyphenyl acetic acid were confirmed as the significant metabolites in the fermentation. These results elucidated the potential mechanisms of HPCs metabolism and their beneficial effects on gut microbiota and colonic phenolic acids production.
Collapse
|
7
|
Chen M, Chen X, Wang K, Cai L, Liu N, Zhou D, Jia W, Gong P, Liu N, Sun Y. Effects of kiwi fruit ( Actinidia chinensis) polysaccharides on metabolites and gut microbiota of acrylamide-induced mice. Front Nutr 2023; 10:1080825. [PMID: 36814509 PMCID: PMC9939636 DOI: 10.3389/fnut.2023.1080825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Kiwifruit (Actinidia chinensis) has rich nutritious and medicinal properties. It is widely consumed worldwide for the intervention of metabolism disorders, however, the underlying mechanism remains unclear. Acrylamide, a well-known toxic ingredient, mainly forms in high-temperature processed carbohydrate-rich food and causes disorders of gut microbiota and systemic metabolism. Methods This study explored the protective effects and underlying mechanisms of kiwifruit polysaccharides against acrylamide-induced disorders of gut microbiota and systemic metabolism by measuring the changes of gut microbiota and serum metabolites in mice. Results The results showed that kiwifruit polysaccharides remarkably alleviated acrylamide-induced toxicity in mice by improving their body features, histopathologic morphology of the liver, and decreased activities of liver function enzymes. Furthermore, the treatment restored the healthy gut microbiota of mice by improving the microbial diversity and abundance of beneficial bacteria such as Lactobacillus. Metabolomics analysis revealed the positive effects of kiwifruit polysaccharides mainly occurred through amino and bile acid-related metabolism pathways including nicotinate and nicotinamide metabolism, primary bile acid biosynthesis, and alanine, aspartate and glutamate metabolism. Additionally, correlation analysis indicated that Lactobacillus exhibited a highly significant correlation with critical metabolites of bile acid metabolism. Discussion Concisely, kiwifruit polysaccharides may protect against acrylamide-induced toxicity by regulating gut microbiota and metabolism.
Collapse
Affiliation(s)
- Mengyin Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China,*Correspondence: Xuefeng Chen ✉
| | - Ketang Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Luyang Cai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Nannan Liu
- College of Chemistry and Materials Science, Weinan Normal University, Weinan, China
| | - Duan Zhou
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wei Jia
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Ning Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yujiao Sun
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China,Yujiao Sun ✉
| |
Collapse
|
8
|
Liu M, Wang L, Huang B, Lu Q, Liu R. 3,4-Dihydroxyphenylacetic acid ameliorates gut barrier dysfunction via regulation of MAPK-MLCK pathway in type 2 diabetes mice. Life Sci 2022; 305:120742. [DOI: 10.1016/j.lfs.2022.120742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 01/16/2023]
|
9
|
Calycosin Improves Intestinal Mucosal Barrier Function after Gastrectomy in Rats through Alleviating Bacterial Translocation, Inflammation, and Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7412331. [PMID: 35795283 PMCID: PMC9251107 DOI: 10.1155/2022/7412331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Objective Calycosin is the main bioactive extract of Astragali Radix with anti-inflammation, antioxidant, and anticancer properties. Here, our study evaluated the protective effects and mechanisms of calycosin on intestinal mucosal barrier under gastrectomy. Methods After receiving gastrectomy, the rats were administrated with 20 mg/kg, 40 mg/kg, or 80 mg/kg calycosin. Endotoxin, bacterial translocation, and intestinal bacterial flora were assayed. Intestinal injury was detected via hematoxylin and eosin staining. Tight junction indicators (occludin, claudin, and ZO-1) and apoptotic proteins (Bax, Bcl-2, and cleaved caspase 3) were examined in intestinal tissues. Inflammatory indicators (IL-1β, IL-6, and TNF-α) were examined in serum or intestinal specimens via ELISA. Apoptosis was assessed via TUNEL staining. IgA + B cells in intestinal tissues and sIgA in intestinal lumen were examined through immunohistochemistry and ELISA, respectively. Oxidative stress indicators (TSH, SOD, CAT, GSH-Px, and MDA) were also detected via ELISA. Results Our results showed that calycosin administration decreased endotoxin levels in peripheral blood, intestine, and portal vein blood; lowered the bacterial translocation ratio; and regained the balance among intestinal bacterial flora (comprising bifidobacterium, lactic acid bacillus, enterobacter, enterococcus, aerobic bacteria, and anaerobic bacteria) in the rats with gastrectomy. After calycosin treatment, intestinal mucosal damage of the rats with gastrectomy was ameliorated, with the increase in expression of tight junction proteins. Additionally, calycosin reduced intestinal inflammation, apoptosis, secretion of sIgA, and oxidative stress in the rats with gastrectomy. Conclusion Altogether, our findings demonstrate that calycosin may improve intestinal mucosal barrier function under gastrectomy via reducing bacterial translocation, inflammation, and oxidative stress.
Collapse
|