1
|
Xiang C, Teng H, Sheng Z, Zhao C, Deng J, Zhao C, He B, Chen L, Ai C. Structural characterization and antioxidant activity mechanism of the ferulic acid-rich subfraction from sugar beet pectin. Carbohydr Polym 2025; 347:122691. [PMID: 39486932 DOI: 10.1016/j.carbpol.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 11/04/2024]
Abstract
The feruloylated sugar chain in sugar beet pectin (SBP) is a natural polyphenol-polysaccharide complex. Its low abundance often leads to be neglected, thereby hindering its bioactivity and mechnism research. In this study, SBP-3 A, a novel feruloylated polysaccharide fragment, was isolated from sugar beet pectin utilizing enzymatic digestion. The presence of ferulic acid on SBP-3 A was confirmed through high-performance liquid chromatography (HPLC), with a mass fraction of 22.5 μg/mg. The average molecular weight was determined to be 33.31 kDa. Methylation analysis, and nuclear magnetic resonance (NMR) spectra revealed that SBP-3 A is a heteroglycan with the main chain structure of →2)-α-Rhap-(1 → 4)-α-GalpA-(1 → 2)-α-Rhap-(1→, and the branched chain structure of ferulic acid (FA) → 3,4)-β-Galp-(1 → 2,4)-α-Rhap-(1→. Subsequently, the antioxidant activity of SBP-3 A was evaluated using the Caenorhabditis elegans (C. elegans). SBP-3 A improved antioxidant enzymes and non-enzymatic defense system, decreased reactive oxygen species levels, and up-regulated the mRNA expression of sod-3, skn-1, and daf-16, while down-regulated the expression of age-1 in C. elegans. Moreover, SBP-3 A modulated the gut flora by favorably affecting the abundances of Lactobacillus, Ligilactobacillus, and Akkermansia, thereby enhancing antioxidant capacity in C. elegans. Consequently, the aforementioned findings support the potential application of SBP-3 A as a functional food for treating oxidative stress-related illnesses.
Collapse
Affiliation(s)
- Chunhong Xiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zhili Sheng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingteng Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Chengang Zhao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Bo He
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| | - Chao Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Li Y, Wang K, Li C. Oxidative Stress in Poultry and the Therapeutic Role of Herbal Medicine in Intestinal Health. Antioxidants (Basel) 2024; 13:1375. [PMID: 39594517 PMCID: PMC11591273 DOI: 10.3390/antiox13111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The intensive broiler farming model has accelerated the development of the poultry farming industry. However, it has also inevitably brought about many stressors that lead to oxidative stress in the organism. The intestine is the leading site of nutrient digestion, absorption, and metabolism, as well as a secretory and immune organ. Oxidative stress in animal production can harm the intestine, potentially leading to significant losses for the farming industry. Under conditions of oxidative stress, many free radicals are produced in the animal's body, attacking the intestinal mucosal tissues and destroying the barrier integrity of the intestinal tract, leading to disease. Recently, herbs have been shown to have a favorable safety profile and promising application in improving intestinal oxidative stress in poultry. Therefore, future in-depth studies on the specific mechanisms of herbs and their extracts for treating intestinal oxidative stress can provide a theoretical basis for the clinical application of herbs and new therapeutic options for intestinal oxidative stress injury during poultry farming. This review focuses on the causes and hazards of oxidative stress in the intestinal tract of poultry, and on herbs and their extracts with therapeutic potential, to provide a reference for developing and applying new antioxidants.
Collapse
Affiliation(s)
| | | | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.W.)
| |
Collapse
|
3
|
Liu H, Wang S, Qiu K, Zheng C, Tan H. Preparation, structural characterization, and biological activities of lotus polysaccharides: A review. Int J Biol Macromol 2024; 279:135191. [PMID: 39216588 DOI: 10.1016/j.ijbiomac.2024.135191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Lotus (Nelumbo nucifera), belonging to the family of Nelumbonaceae, is a beautiful aquatic perennial plant. It has been used as an ancient horticulture plant and famous agricultural crop for thousands of years. Modern phytochemical and pharmacological experiments have proved that polysaccharide is one of the most pivotal bioactive constituents of lotus. Hence, the systematic review covering the fundamental research advances and developing prospects of N. nucifera polysaccharides (NNPs) is an urgent demand to provide theoretical basis for their further research and application. The present review summarizes current emerging research progresses on the polysaccharides isolated from lotus, and it focuses on advanced extraction and purification methods, unique structural features, engaging biological activities, potential molecular mechanisms, as well as the relationship of structure and activity of NNPs. This review sheds light on the potential values of NNPs in affording functionally bioactive agents in food industry or therapeutically effective medicines for health care. In addition, this review will provide valuable insights for further commercial product development and promising industrial application of NNPs in both of the fundamental research communities and food or pharmaceutical industries in future.
Collapse
Affiliation(s)
- Hongxin Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, China
| | - Kaidi Qiu
- State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zheng
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Haibo Tan
- State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
JiZe XP, Fu YP, Li CY, Zhang CW, Zhao YZ, Kuang YC, Liu SQ, Huang C, Li LX, Tang HQ, Feng B, Chen XF, Zhao XH, Yin ZQ, Tian ML, Zou YF. Extraction, characterization and intestinal anti-inflammatory and anti-oxidative activities of polysaccharide from stems and leaves of Chuanminshen violaceum M. L. Sheh & R. H. Shan. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118357. [PMID: 38763374 DOI: 10.1016/j.jep.2024.118357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chuanminshen violaceum M. L. Sheh & R. H. Shan (CV) is used as a medicine with roots, which have the effects of benefiting the lungs, harmonizing the stomach, resolving phlegm and detoxifying. Polysaccharide is one of its main active components and has various pharmacological activities, but the structural characterization and pharmacological activities of polysaccharide from the stems and leaves parts of CV are still unclear. AIM OF THE STUDY The aim of this study was to investigate the optimal extraction conditions for ultrasound-assisted extraction of polysaccharide from CV stems and leaves, and to carry out preliminary structural analyses, anti-inflammatory and antioxidant effects of the obtained polysaccharide and to elucidate the underlying mechanisms. MATERIALS AND METHODS The ultrasonic-assisted extraction of CV stems and leaves polysaccharides was carried out, and the response surface methodology (RSM) was used to optimize the extraction process to obtain CV polysaccharides (CVP) under the optimal conditions. Subsequently, we isolated and purified CVP to obtain the homogeneous polysaccharide CVP-AP-I, and evaluated the composition, molecular weight, and structural features of CVP-AP-I using a variety of technical methods. Finally, we tested the pharmacological activity of CVP-AP-Ⅰ in an LPS-induced model of oxidative stress and inflammation in intestinal porcine epithelial cells (IPEC-J2) and explored its possible mechanism of action. RESULTS The crude polysaccharide was obtained under optimal extraction conditions and subsequently isolated and purified to obtain CVP-AP-Ⅰ (35.34 kDa), and the structural characterization indicated that CVP-AP-Ⅰ was mainly composed of galactose, galactose, rhamnose and glucose, which was a typical pectic polysaccharide. In addition, CVP-AP-Ⅰ attenuates LPS-induced inflammation and oxidative stress by inhibiting the expression of pro-inflammatory factor genes and proteins and up-regulating the expression of antioxidant enzyme-related genes and proteins in IPEC-J2, by a mechanism related to the activation of the Nrf2/Keap1 signaling pathway. CONCLUSION The results of this study suggest that the polysaccharide isolated from CV stems and leaves was a pectic polysaccharide with similar pharmacological activities as CV roots, exhibiting strong anti-inflammatory and antioxidant activities, suggesting that CV stems and leaves could possess the same traditional efficacy as CV roots, which is expected to be used in the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Xiao-Ping JiZe
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Chao-Wen Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yu-Zhe Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yu-Chao Kuang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Si-Qi Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Fu Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
5
|
Chen N, Jiang T, Xu J, Xi W, Shang E, Xiao P, Duan JA. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int J Biol Macromol 2024; 270:132391. [PMID: 38761914 DOI: 10.1016/j.ijbiomac.2024.132391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Chen N, Hu M, Jiang T, Xiao P, Duan JA. Insights into the molecular mechanisms, structure-activity relationships and application prospects of polysaccharides by regulating Nrf2-mediated antioxidant response. Carbohydr Polym 2024; 333:122003. [PMID: 38494201 DOI: 10.1016/j.carbpol.2024.122003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
The occurrence and development of many diseases are closely related to oxidative stress. In this context, accumulating evidence suggests that Nrf2, as the master switch of cellular antioxidant signaling, plays a central role in controlling the expression of antioxidant genes. The core molecular mechanism of polysaccharides treatment of oxidative stress-induced diseases is to activate Keap1/Nrf2/ARE signaling pathway, promote nuclear translocation of Nrf2, and up-regulate the expression of antioxidant enzymes. However, recent studies have shown that other signaling pathways in which polysaccharides exert antioxidant effects, such as PI3K/Akt/GSK3β, JNK/Nrf2 and NF-κB, have complex crosstalk with Keap1/Nrf2/ARE, may have direct effects on the nuclear translocation of Nrf2. This suggests a new strategy for designing polysaccharides as modulators of Nrf2-dependent pathways to target the antioxidant response. Therefore, in this work, we investigate the crosstalk between Keap1/Nrf2/ARE and other antioxidant signaling pathways of polysaccharides by regulating Nrf2-mediated antioxidant response. For the first time, the structural-activity relationship of polysaccharides, including molecular weight, monosaccharide composition, and glycosidic linkage, is systematically elucidated using principal component analysis and cluster analysis. This review also summarizes the application of antioxidant polysaccharides in food, animal production, cosmetics and biomaterials. The paper has significant reference value for screening antioxidant polysaccharides targeting Nrf2.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Meifen Hu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
7
|
Fan X, Yu W, Wang Q, Yang H, Tan D, Yu B, He J, Zheng P, Yu J, Luo J, Luo Y, Yan H, Wang J, Wang H, Wang Q, Mao X. Protective effect of Broussonetia papyrifera leaf polysaccharides on intestinal integrity in a rat model of diet-induced oxidative stress. Int J Biol Macromol 2024; 268:131589. [PMID: 38643924 DOI: 10.1016/j.ijbiomac.2024.131589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
This study aimed to investigate the effect of Broussonetia papyrifera polysaccharides (BPP) on the jejunal intestinal integrity of rats ingesting oxidized fish oil (OFO) induced oxidative stress. Polysaccharides (Mw 16,956 Da) containing carboxyl groups were extracted from Broussonetia papyrifera leaves. In vitro antioxidant assays showed that this polysaccharide possessed antioxidant capabilities. Thirty-two male weaned rats were allocated into two groups orally infused BPP solution and PBS for 26 days, respectively. From day 9 to day 26, half of the rats in each group were fed food containing OFO, where the lipid peroxidation can induce intestinal oxidative stress. OFO administration resulted in diarrhea, decreased growth performance (p < 0.01), impaired jejunal morphology (p < 0.05) and antioxidant capacity (p < 0.01), increased the levels of ROS and its related products, IL-1β and IL-17 (p < 0.01) of jejunum, as well as down-regulated Bcl-2/Bax (p < 0.01) and Nrf2 signaling (p < 0.01) of jejunum in rats. BPP gavage effectively alleviated the negative effects of OFO on growth performance, morphology, enterocyte apoptosis, antioxidant capacity and inflammation of jejunum (p < 0.05) in rats. In the oxidative stress model cell assay, the use of receptor inhibitors inhibited the enhancement of antioxidant capacity by BPP. These results suggested that BPP protected intestinal morphology, thus improving growth performance and reducing diarrhea in rats ingesting OFO. This protective effect may be attributed to scavenging free radicals and activating the Nrf2 pathway, which enhances antioxidant capacity, consequently reducing inflammation and mitigating intestinal cell death.
Collapse
Affiliation(s)
- Xiangqi Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Wei Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Qingxiang Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Heng Yang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Dayan Tan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Huifen Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Quyuan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China.
| |
Collapse
|
8
|
Zhang CW, Zou YF, Zou Y, JiZe XP, Li CY, Fu YP, Huang C, Li LX, Yin ZQ, Wu FM, Rise F, Inngjerdingen KT, Zhang SQ, Zhao XH, Song X, Zhou X, Ye G, Tian ML. Ultrasonic-assisted extraction of polysaccharide from Paeoniae Radix alba: Extraction optimization, structural characterization and antioxidant mechanism in vitro. Int J Biol Macromol 2024; 268:131816. [PMID: 38677682 DOI: 10.1016/j.ijbiomac.2024.131816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Paeoniae Radix alba is used in Traditional Chinese Medicine for the treatment of gastrointestinal disorders, immunomodulatory, cancer, and other diseases. In the current study, the yield of Paeoniae Radix alba polysaccharide (PRP) was significantly increased with optimal ultrasound-assisted extraction compared to hot water extraction. Further, an acidic polysaccharide (PRP-AP) was isolated from PRP after chromatographic separation and was characterized as a typical pectic polysaccharide with side chains of arabinogalactans types I and II. Moreover, it showed antioxidant effects on LPS-induced damage on IPEC-J2 cells determined by qRT-PCR and ELISA, including decreasing the pro-inflammatory factors' expressions and increasing the antioxidant enzymes activities, which was shown to be related to the Nrf2/Keap1 pathway modulated by PRP-AP. The metabolites change (such as itaconate, cholesterol sulfate, etc.) detected by untargeted metabolomic analysis in cells was also shown to be modulated by PRP-AP, and these metabolites were further utilized and protected cells damaged by LPS. These results revealed the cellular active mechanism of the macromolecular PRP-AP on protecting cells, and supported the hypothesis that PRP-AP has strong benefits as an alternative dietary supplement for the prevention of intestinal oxidative stress by modulating cellular metabolism.
Collapse
Affiliation(s)
- Chao-Wen Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - Yun Zou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Ping JiZe
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Kari Tvete Inngjerdingen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Sha-Qiu Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
9
|
Du H, Xing Y, Jin X, Yan S, Shi B. Effects of Artemisia ordosica polysaccharide on growth performance and antioxidant capacity in broilers. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2022.2158093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Haidong Du
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yuanyuan Xing
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
10
|
Takata T, Masauji T, Motoo Y. Potential of the Novel Slot Blot Method with a PVDF Membrane for Protein Identification and Quantification in Kampo Medicines. MEMBRANES 2023; 13:896. [PMID: 38132900 PMCID: PMC10745123 DOI: 10.3390/membranes13120896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Kampo is a Japanese traditional medicine modified from traditional Chinese medicine. Kampo medicines contain various traditional crude drugs with unknown compositions due to the presence of low-molecular-weight compounds and proteins. However, the proteins are generally rare and extracted with high-polarity solvents such as water, making their identification and quantification difficult. To develop methods for identifying and quantifying the proteins in Kampo medicines, in the current study we employ previous technology (e.g., column chromatography, electrophoresis, and membrane chromatography), focusing on membrane chromatography with a polyvinylidene difluoride (PVDF) membrane. Moreover, we consider slot blot analysis based on the principle of membrane chromatography, which is beneficial for analyzing the proteins in Kampo medicines as the volume of the samples is not limited. In this article, we assess a novel slot blot method developed in 2017 and using a PVDF membrane and special lysis buffer to quantify advanced glycation end products-modified proteins against other slot blots. We consider our slot blot analysis superior for identifying and quantifying proteins in Kampo medicines compared with other methods as the data obtained with our novel slot blot can be shown with both error bars and the statistically significant difference, and our operation step is simpler than those of other methods.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanakacho 918-8503, Fukui, Japan
| |
Collapse
|
11
|
Li J, Bai J, Song Z, Ji Y, Chen Z, Yang Y, Wu Z. Dietary pectin attenuates Salmonella typhimurium-induced colitis by modulating the TLR2-NF-κB pathway and intestinal microbiota in mice. Food Chem Toxicol 2023; 182:114100. [PMID: 37838214 DOI: 10.1016/j.fct.2023.114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The role of dietary pectin on microbial-induced colitis, oxidative status, barrier function, and microbial composition, as well as the underlying mechanisms, is scarce. In this study, we aimed to investigate whether dietary pectin alleviates Salmonella typhimurium-induced colitis in mice. Male C57BL/6J mice fed an isocaloric and isofibrous diet with 7% pectin or cellulose were administered sterile water or Salmonella typhimurium to induce colitis, which is equal to a human food dose of 0.57% (5.68 g/kg). Dietary pectin alleviated Salmonella typhimurium-induced colitis and oxidative stress as shown by the reduced disease activity index score, decreased colon shortening and histological damage score, colonic hydrogen peroxide, malondialdehyde concentrations, and relative mRNA expressions of coenzyme Q-binding protein COQ10 homologue B (Coq10b), Ccl-2, Ccl-3, Ccl-8, Tnf-α, Il-1β, Ifn-γ, Ifn-β, and serum TNF-α protein level. Moreover, pectin administration ameliorated the downregulated colonic abundances of occludin, zonula occludens-1, zonula occludens-2, and the upregulated abundances of TLR2 and p-NF-κB in Salmonella-infected mice. Additionally, 16S rRNA analysis demonstrated that pectin altered the microbial beta-diversity and reduced Salmonella levels. Collectively, pectin ameliorated Salmonella typhimurium-induced colitis, oxidative stress, and tight junction, which may be related to the inactivation of TLR2-NF-κB signalling and reduced abundance of Salmonella.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Zhaohui Chen
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
12
|
Kang J, Sha XX, Geng CJ, Li LX, Chen J, Ren FC, Tian ML. Ultrasound-assisted extraction and characterization of Penthorum chinense polysaccharide with anti-inflammatory effects. ULTRASONICS SONOCHEMISTRY 2023; 99:106593. [PMID: 37696214 PMCID: PMC10498194 DOI: 10.1016/j.ultsonch.2023.106593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Penthorum chinense has been used in both food and medication for many years, and polysaccharide of which was considered as one of the bioactive compounds. However, the extraction process of polysaccharide from P. chinense (PCP) was not well optimized. Ultrasound-assisted extractionhas been widely employed in the extraction of natural products for its compliance with the concept of green and economic chemistry. To better investigate the structure and biology activity of PCP, response surface methodology was employed to optimize the ultrasound-assisted extraction conditions of PCP. The optimum extraction for the ultrasound-assisted extraction of PCP were obtained as ratio of solvent to material 40 mL/g, ultrasonic power 380 W, and extraction time of 50 min. The yield of PCP reached 8.71% under these optimized conditions. PCP was further purified by using anion exchange chromatography and gel filtration, an acidic fraction PCP-AP-1 was hereby obtained. The results of structural elucidation indicated that PCP-AP-1 was a typical pectic polysaccharide with a molecular weight of 66360 Da, mainly composed of galacturonic acid (68.5 mol%), followed by arabinose (9.8 mol%), rhamnose (9.4 mol%), glucose (7.7 mol%), with homogalacturonan region and rhamnogalacturonan I regions. In vitro study showed that PCP-AP-1 could improve the inflammation induced by lipopolysaccharide in intestinal epithelial cells, which was probably performed through the inhibition of multiple signaling pathways including the inhibition of TLR4, NOD1/2 and NF-κB pathway, as well as the reduction of NLRP3 inflammasome. This study defined the type of polysaccharide present in P. chinense and revealed a potential of application this plant in the prevention of intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Jia Kang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Xiao-Xi Sha
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Cai-Juan Geng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Feng-Chun Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
13
|
Zou Y, Yan H, Li C, Wen F, Jize X, Zhang C, Liu S, Zhao Y, Fu Y, Li L, Liu F, Chen J, Li R, Chen X, Tian M. A Pectic Polysaccharide from Codonopsis pilosula Alleviates Inflammatory Response and Oxidative Stress of Aging Mice via Modulating Intestinal Microbiota-Related Gut-Liver Axis. Antioxidants (Basel) 2023; 12:1781. [PMID: 37760084 PMCID: PMC10525188 DOI: 10.3390/antiox12091781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is a biological process that leads to the progressive deterioration and loss of physiological functions in the human body and results in an increase in morbidity and mortality, and aging-related disease is a major global problem that poses a serious threat to public health. Polysaccharides have been shown to delay aging by reducing oxidative damage, suppressing inflammatory responses, and modulating intestinal microbiota. Our previous studies have shown that polysaccharide CPP-1 extracted from the root of Codonopsis pilosula possesses noticeable anti-oxidant activity in vitro. Thus, in our study, we tested the anti-aging effect of CPP-1 in naturally aging mice (in vivo). Eighteen C57/BL mice (48-week-old, male) were divided into a control group, high-dose CPP-1 group (20 mg/mL), and low-dose CPP-1 group (10 mg/mL). We discovered that CPP-1 can exert a reparative effect on aging stress in the intestine and liver, including alleviating inflammation and oxidative damage. We revealed that CPP-1 supplementation improved the intestinal microbiota composition and repaired the intestinal barrier in the gut. Furthermore, CPP-1 was proved to modulate lipid metabolism and repair hepatocyte injury in the liver by influencing the enterohepatic axis associated with the intestinal microbiota. Therefore, we concluded that CPP-1 prevents and alleviates oxidative stress and inflammatory responses in the intestine and liver of aging mice by modulating the intestinal microbiota-related gut-liver axis to delay aging.
Collapse
Affiliation(s)
- Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Hong Yan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Cenyu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Fang Wen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Xiaoping Jize
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Chaowen Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Siqi Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Yuzhe Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Yuping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Fan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| | - Rui Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| | - Xingfu Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| | - Mengliang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| |
Collapse
|
14
|
Cheng Y, Huang X, Li L, Liu L, Zhang C, Fan X, Xie Y, Zou Y, Geng Z, Huang C. Effects of Solid Fermentation on Polygonatum cyrtonema Polysaccharides: Isolation, Characterization and Bioactivities. Molecules 2023; 28:5498. [PMID: 37513370 PMCID: PMC10384955 DOI: 10.3390/molecules28145498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Polygonati Rhizoma is a widely used traditional Chinese medicine (TCM) with complex pre-processing steps. Fermentation is a common method for processing TCM to reduce herb toxicity and enhance their properties and/or produce new effects. Here, in this study, using Bacillus subtilis and Saccharomyces cerevisiae, we aimed to evaluate the potential application of solid fermentation in isolating different functional polysaccharides from Polygonatum cyrtonema Hua. With hot water extraction, ethanol precipitation, DEAE anion exchange chromatography and gel filtration, multiple neutral and acidic polysaccharides were obtained, showing different yields, content, compositions and functional groups after fermentation. Combining in vitro experiments and in vivo aging and immunosuppressed mouse models, we further compared the antioxidant and immunomodulating bioactivities of these polysaccharides and found a prominent role of a natural polysaccharide (BNP) from fermented P. cyrtonema via Bacillus subtilis in regulating intestinal antioxidant defense and immune function, which may be a consequence of the ability of BNP to modulate the homeostasis of gut microbiota. Thus, this work provides evidence for the further development and utilization of P. cyrtonema with fermentation, and reveals the potential values of BNP in the treatment of intestinal disorders.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Xueyuan Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Liu
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Chunsheng Zhang
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Xiang Fan
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Yu Xie
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Yuanfeng Zou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhe Geng
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Dai G, Wang J, Zheng J, Xia C, Wang Y, Duan B. Bioactive polysaccharides from lotus as potent food supplements: a review of their preparation, structures, biological features and application prospects. Front Nutr 2023; 10:1171004. [PMID: 37448668 PMCID: PMC10338014 DOI: 10.3389/fnut.2023.1171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Lotus is a famous plant of the food and medicine continuum for millennia, which possesses unique nutritional and medicinal values. Polysaccharides are the main bioactive component of lotus and have been widely used as health nutritional supplements and therapeutic agents. However, the industrial production and application of lotus polysaccharides (LPs) are hindered by the lack of a deeper understanding of the structure-activity relationship (SAR), structural modification, applications, and safety of LPs. This review comprehensively comments on the extraction and purification methods and structural characteristics of LPs. The SARs, bioactivities, and mechanisms involved are further evaluated. The potential application and safety issues of LPs are discussed. This review provides valuable updated information and inspires deeper insights for the large scale development and application of LPs.
Collapse
Affiliation(s)
- Guona Dai
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jiale Wang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Conglong Xia
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Yaping Wang
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
| |
Collapse
|
16
|
Fu YP, Peng X, Zhang CW, Jiang QX, Li CY, Paulsen BS, Rise F, Huang C, Feng B, Li LX, Chen XF, Jia RY, Li YP, Zhao XH, Ye G, Tang HQ, Liang XX, Lv C, Tian ML, Yin ZQ, Zou YF. Salvia miltiorrhiza polysaccharide and its related metabolite 5-methoxyindole-3-carboxaldehyde ameliorate experimental colitis by regulating Nrf2/Keap1 signaling pathway. Carbohydr Polym 2023; 306:120626. [PMID: 36746576 DOI: 10.1016/j.carbpol.2023.120626] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
The roots of Salvia miltiorrhiza have been used in Traditional Chinese Medicine for thousands of years. However, tons of aerial parts of this plant are usually discarded in the production of roots preparation. To make better use of these plant resources, the polysaccharide isolated from the aerial part of S. miltiorrhiza was investigated for its potential protection against intestinal diseases. A pectic polysaccharide (SMAP-1) was isolated and characterized being composed of homogalacturonan as the main chain and rhamnogalacturonan type I as ramified region, with side chains including arabinans and possible arabinogalactan type I and II. SMAP-1 exhibited robust protective effects against dextran sodium sulfate (DSS)-induced colitis and restored colitis symptoms, colonic inflammation, and barrier functions. Anti-oxidative effects were also observed by up-regulating Nrf2/Keap1 signaling pathway. Additionally, the level of serum 5-methoxyindole-3-carboxaldehyde (5-MC) was restored by SMAP-1 identified in metabolomic analysis, being correlated with the aforementioned effects. Protection against oxidative stress on intestinal porcine enterocyte cells (IPEC-J2) by 5-MC was observed through the activation of Nrf2/Keap1 system, as also shown by SMAP-1. In conclusion, SMAP-1 could be a promising candidate for colitis prevention, and 5-MC could be the signal metabolite of SMAP-1 in protecting against oxidative stress in the intestine.
Collapse
Affiliation(s)
- Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao-Wen Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Quan-Xing Jiang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Berit Smestad Paulsen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xing-Fu Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang-Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Xia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng-Liang Tian
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
17
|
Li J, Wang L, Yang K, Zhang G, Li S, Gong H, Liu M, Dai X. Structure characteristics of low molecular weight pectic polysaccharide and its anti-aging capability by modulating the intestinal homeostasis. Carbohydr Polym 2023; 303:120467. [PMID: 36657846 DOI: 10.1016/j.carbpol.2022.120467] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Pectic polysaccharide has attracted increasing attention for their potential biological properties and applications in health industries. In this study, a low-molecular-weight pectic polysaccharide, POS4, was obtained from citrus peel. The structure of POS4 was preliminarily analyzed by gel-permeation chromatography, monosaccharide analysis, infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR). Results showed that the molecular weight of POS4 was 4.76 kDa and it was a galacturonic acid enriched pectic polysaccharide. The anti-aging activity in vivo showed that POS4 could notably prolong the average lifespan of fruit flies by suppressing the generation of reactive oxygen species (ROS). Further studies demonstrated that POS4 could enhance intestinal homeostasis by modulating gut microbiota in a positive way and regulating autophagy associated genes. Taken together, we proposed that galacturonic acid enriched low molecular weight pectic polysaccharide have great potential in the development of healthy foods such as anti-aging health care products.
Collapse
Affiliation(s)
- Junhui Li
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
| | - Lu Wang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Kun Yang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Guocai Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Shan Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266003, China
| | - Hongjian Gong
- Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Mingqi Liu
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
18
|
Wang M, Hu WJ, Wang QH, Yang BY, Kuang HX. Extraction, purification, structural characteristics, biological activities, and application of the polysaccharides from Nelumbo nucifera Gaertn. (lotus): A review. Int J Biol Macromol 2023; 226:562-579. [PMID: 36521698 DOI: 10.1016/j.ijbiomac.2022.12.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Nelumbo nucifera Gaertn. (lotus) is a widely distributed plant with a long history of cultivation and consumption. Almost all parts of the lotus can be used as foodstuff and nourishment, or as an herb. It is noteworthy that the polysaccharides obtained from lotus exhibit surprisingly and satisfying biological activities, which explains the various benefits of lotus to human health, including anti-diabetes, anti-osteoporosis, antioxidant, anti-inflammatory, anti-tumor, etc. Here, we systematically review the recent major studies on extraction and purification methods of polysaccharides from different parts (rhizome, seed, leaf, plumule, receptacle and stamen) of lotus, as well as the characterization of their chemical structure, biological activity and structure-activity relationship, and the applications of lotus polysaccharides in different fields. This article will give an updated and deeper understanding of lotus polysaccharides and provide theoretical basis for their further research and application in human health and manufacture development.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qiu-Hong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
19
|
Luo JH, Li J, Shen ZC, Lin XF, Chen AQ, Wang YF, Gong ES, Liu D, Zou Q, Wang XY. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front Nutr 2023; 10:1102146. [PMID: 36875839 PMCID: PMC9978827 DOI: 10.3389/fnut.2023.1102146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Zou YF, JiZe XP, Li CY, Zhang CW, Fu YP, Yin ZQ, Li YP, Song X, Li LX, Zhao XH, Feng B, Huang C, Ye G, Tang HQ, Li NY, Chen J, Chen XF, Tian ML. Polysaccharide from aerial part of Chuanminshen violaceum alleviates oxidative stress and inflammatory response in aging mice through modulating intestinal microbiota. Front Immunol 2023; 14:1159291. [PMID: 37153605 PMCID: PMC10162438 DOI: 10.3389/fimmu.2023.1159291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Aging is a biological process of progressive deterioration of physiological functions, which poses a serious threat to individual health and a heavy burden on public health systems. As population aging continues, research into anti-aging drugs that prolong life and improve health is of particular importance. In this study, the polysaccharide from stems and leaves of Chuanminshen violaceum was obtained with water extraction and alcohol precipitation, and then separated and purified with DEAE anion exchange chromatography and gel filtration to obtain CVP-AP-I. We gavaged natural aging mice with CVP-AP-I and performed serum biochemical analysis, histological staining, quantitative real-time PCR (qRT-PCR) and ELISA kit assays to analyze inflammation and oxidative stress-related gene and protein expression in tissues, and 16SrRNA to analyze intestinal flora. We found that CVP-AP-I significantly improved oxidative stress and inflammatory responses of the intestine and liver, restored the intestinal immune barrier, and balanced the dysbiosis of intestinal flora. In addition, we revealed the potential mechanism behind CVP-AP-I to improve intestinal and liver function by regulating intestinal flora balance and repairing the intestinal immune barrier to regulate the intestinal-liver axis. Our results indicated that C. violaceum polysaccharides possessed favorable antioxidant, anti-inflammatory and potentially anti-aging effects in vivo.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Ping JiZe
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao-Wen Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang-Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning-Yuan Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xing-Fu Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Meng-Liang Tian,
| |
Collapse
|
21
|
Zou YF, Li CY, Fu YP, Jiang QX, Peng X, Li LX, Song X, Zhao XH, Li YP, Chen XF, Feng B, Huang C, Jia RY, Ye G, Tang HQ, Yin ZQ. The comparison of preliminary structure and intestinal anti-inflammatory and anti-oxidative activities of polysaccharides from different root parts of Angelica sinensis (Oliv.) Diels. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115446. [PMID: 35675860 DOI: 10.1016/j.jep.2022.115446] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Angelica sinensis, has been commonly used in gynecology for centuries, and is normally applied divided into different parts in various clinical applications. At present, the majority of existing studies focus on the volatile oil and ferulic acid extracted from different parts of A. sinensis, but there is a dearth of scientific information on its water-soluble polysaccharides. AIM OF THE STUDY The structures of polysaccharides from plants, have been reported contributing to multiple pharmacological activities such as anti-oxidative, anti-inflammatory, anti-tumor and liver protection. Therefore, the focus of this study was on its anti-oxidative and anti-inflammatory activities in vitro, which would be based on the various polysaccharides with distinct structures obtained from different parts of the A. sinensis root. MATERIALS AND METHODS Four parts of A. sinensis root were separated according to the Chinese Pharmacopoeia: head, body, tail and whole body. Crude polysaccharides were obtained by water extraction and ethanol precipitation method, and were further fractionated by DEAE Sepharose chromatographic column and gel filtration. The comparison of ASPs from different root parts were performed, including chemical compositions determined by colorimetric analysis, monosaccharide compositions measured by high performance liquid chromatography (HPLC), glycosidic linkage units determined by methylation and gas chromatography-mass spectrometry (GC-MS), organic functional groups determined by FT-IR, molecular weight (Mw) demarcated by gel permeation chromatography, and the viscosities and solubilities were measured according to method published in the previous report with minor modification. In vitro biological activities of APSs were compared on lipopolysaccharide (LPS)-induced inflammatory and oxidative stress models on IPEC-J2 cells. RESULTS Four purified polysaccharides, ASP-H-AP, ASP-B-AP, ASP-T-AP and ASP-Hb-AP from the root of A. sinensis, were obtained, and consisted of various contents of protein and the polyphenol. They were possibly pectic polysaccharides with a long homogalacturonan region as the main backbone and ramified with rhamnogalacturonan I region, but they were differed by subregions and the relative contents of glycosidic units. The Mw of four pectic polysaccharides were ranged from 67.9-267.7 kDa. The infrared spectrum also showed that the four polysaccharide fractions contained the characteristic peaks of polysaccharides. Their distinct primary structure could lead to a variety of biological activities. In vitro biological assays suggested that four polysaccharide fractions can protect IPEC-J2 cells against the LPS-induced inflammation by down-regulating inflammation factors and related genes on IPEC-J2 cells. These polysaccharides also could alleviate oxidative stress on IPEC-J2 cells by up-regulating the gene and protein expressions of antioxidant enzymes. It was concluded that ASP-H-AP possessed better anti-inflammatory and anti-oxidative effects, while those of ASP-T-AP was relatively poor among the four polysaccharide fractions. CONCLUSION All results indicated that the structure of pectic polysaccharides from different root parts of A. sinensis differed, which lead to their distinct anti-inflammatory and anti-oxidative activities. This may also be one of the factors why different parts of A. sinensis showed various pharmacological activities and applied independently in traditional use. In addition, it would be valuable for further studies on structure-activity relationship of polysaccharides obtained by different root parts of A. sinensis.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Quan-Xing Jiang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yang-Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Fu Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bing Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
22
|
Polysaccharide from Salviae miltiorrhizae Radix et Rhizoma Attenuates the Progress of Obesity-Induced Non-Alcoholic Fatty Liver Disease through Modulating Intestinal Microbiota-Related Gut–Liver Axis. Int J Mol Sci 2022; 23:ijms231810620. [PMID: 36142520 PMCID: PMC9505563 DOI: 10.3390/ijms231810620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, thus treatments for it have attracted lots of interest. In this study, the Salviae miltiorrhizae Radix et Rhizoma (SMRR) polysaccharide was isolated by hot water extraction and ethanol precipitation, and then purified by DEAE anion exchange chromatography and gel filtration. With a high-fat-diet-induced obesity/NAFLD mouse model, we found that consumption of the SMRR polysaccharide could remarkably reverse obesity and its related progress of NAFLD, including attenuated hepatocellular steatosis, hepatic fibrosis and inflammation. In addition, we also reveal the potential mechanism behind these is that the SMRR polysaccharide could regulate the gut–liver axis by modulating the homeostasis of gut microbiota and thereby improving intestinal function.
Collapse
|
23
|
Fu YP, Li CY, Peng X, Zou YF, Rise F, Paulsen BS, Wangensteen H, Inngjerdingen KT. Polysaccharides from Aconitum carmichaelii leaves: Structure, immunomodulatory and anti-inflammatory activities. Carbohydr Polym 2022; 291:119655. [DOI: 10.1016/j.carbpol.2022.119655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
|
24
|
Wu DT, Feng KL, Li F, Hu YC, Wang SP, Gan RY, Zou L. In vitro digestive characteristics and microbial degradation of polysaccharides from lotus leaves and related effects on the modulation of intestinal microbiota. Curr Res Food Sci 2022; 5:752-762. [PMID: 35520274 PMCID: PMC9061614 DOI: 10.1016/j.crfs.2022.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Polysaccharides exist as one of the most abundant components in lotus leaves, which attract increasing attention owing to their promising health-promoting benefits. In this study, the digestive and microbial degradation characteristics of lotus leaf polysaccharides (LLP) were studied by using an in vitro gastrointestinal model. The results suggested that LLP was stable in the human upper gastrointestinal tract in vitro according to its digestive stabilities at different simulated digestion stages. Conversely, the indigestible LLP (LLPI) could be remarkably utilized by intestinal microbiota in human feces during in vitro fermentation, and its fermentability was 58.11% after the in vitro fermentation of 48 h. Indeed, the microbial degradation characteristics of LLPI during in vitro fermentation by human fecal inoculum were revealed. The results showed that the content of reducing sugars released from LLPI obviously increased from 0.498 to 2.176 mg/mL at the initial fermentation stage (0–6 h), and its molecular weight sharply decreased from 4.08 × 104 to 2.02 × 104 Da. Notably, the molar ratios of arabinose (Ara), galactose (Gal), and galacturonic acid (GalA) in LLPI decreased from 2.89 to 1.40, from 5.46 to 3.72, and from 21.24 to 18.71, respectively, suggesting that the utilization of arabinose and galactose in LLPI by intestinal microbiota was much faster than that of galacturonic acid at the initial fermentation stage. Additionally, LLPI could remarkably regulate gut microbial composition by increasing the abundances of several beneficial microbes, including Bacteroides, Bifidobacterium, Megamonas, and Collinsella, resulting in the promoted generation of several short-chain fatty acids, especially acetic, propionic, and butyric acids. The findings from the present study are beneficial to better understanding the digestive and microbial degradation characteristics of LLP, which indicate that LLP can be used as a potential prebiotic for the improvement of intestinal health. LLP was stable in the human upper gastrointestinal tract in vitro. The indigestible LLP could be remarkably utilized by intestinal microbiota. Arabinose and galactose were quickly utilized at the initial fermentation stage. Bacteroides, Bifidobacterium, Megamonas, and Collinsella obviously increased. SCFAs, especially acetic, propionic, and butyric acids, remarkably promoted.
Collapse
|