1
|
Bai G, Zhao M, Chen XW, Ma CG, Ma Y, Xianqing H. Fabrication, characterization and simulated gastrointestinal digestion of sea buckthorn pulp oil microcapsule: effect of wall material and interfacial bilayer stabilization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1737-1744. [PMID: 39390660 DOI: 10.1002/jsfa.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Sea buckthorn (Hippophae rhamnoides L.) pulp oil is rich in functional components; however, low water solubility and stability limit its applications. This study fabricated sea buckthorn pulp oil microcapsules using whey protein isolate (WPI), soy protein isolate (SPI), sodium caseinate (NaCN), gum arabic (GA), starch sodium octenylsuccinate (OSAS) and SPI mixed with chitosan (CHI). The influences of these wall materials on physicochemical properties, release behavior and digestibility were explored. RESULTS Protein-based wall materials (WPI, NaCN, SPI) demonstrated lower bulk densities due to their porous structures and larger particle sizes, while GA and OSAS produced denser microcapsules. Encapsulation efficiency was the highest for protein-based microcapsules (79.41-89.12%) and the lowest for GA and OSAS. The surface oil percentage of protein-based microcapsules (1.41-4.40%) was lower than that of the other microcapsules. Protein-based microcapsules showed concave and cracked surfaces, while GA and OSAS microcapsules were spherical and smooth. CHI improved reconstitution performance, leading to faster dissolution. During simulated gastrointestinal digestion, protein-based microcapsules released more free fatty acids (FFAs) in the intestinal phase, while CHI-modified SPI microcapsules showed a delayed release pattern due to thicker walls. CONCLUSION Protein-based wall materials were more effective for sea buckthorn pulp oil microencapsulation, providing higher encapsulation efficiency, better flow properties and releasing more FFAs. The addition of CHI led to the layer-by-layer self-assembly of the microcapsule wall and resulted in sustained release during in vitro intestinal digestion. These findings suggested the potential of protein-based microcapsules for targeted delivery and improved applications of bioactive oils in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ge Bai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Man Zhao
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Xiao-Wei Chen
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Chuan-Guo Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Yan Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Huang Xianqing
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| |
Collapse
|
2
|
Hu S, Li W, Cai Z, Tang C, Li B, Liu S, Li Y. Research progress on chitin/chitosan-based emulsion delivery systems and their application in lipid digestion regulation. Crit Rev Food Sci Nutr 2023; 64:13275-13297. [PMID: 37811646 DOI: 10.1080/10408398.2023.2264392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Excessive lipid intake is linked to an elevated risk of health problems. However, reducing lipid contents may influence food structure and flavor. Some alternatives are needed to control the lipid absorption. Emulsions are common carriers for lipids, which can control the hydrolysis and absorption of lipids. Chitin (Ch) and chitosan (CS) are natural polysaccharides with good biodegradability, biocompatibility, and unique cationic properties. They have been reported to be able to delay lipolysis, which can be regarded as one of the most promising agents that regulates lipid digestion (LiD). The application of Ch/CS and their derivatives in emulsions are summarized in this review with a focus on their performances and mechanisms for LiD regulation, aiming to provide theoretical guidance for the development of novel Ch/CS emulsions, and the regulation of LiD. A reasonable design of emulsion interface can provide its resistance to the external environment and then control LiD. The properties of emulsion interface are the key factors affecting LiD. Therefore, systematic study on the relationship between Ch/CS-based emulsion structure and LiD can not only instruct the reasonable design of emulsion interface to accurately regulate LiD, but also provide scientific guidelines for applying Ch/CS in functional food, medicine and other fields.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenbo Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhi Cai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Cuie Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| |
Collapse
|
3
|
Liu C, Tian Y, Ma Z, Zhou L. Pickering Emulsion Stabilized by β-Cyclodextrin and Cinnamaldehyde/β-Cyclodextrin Composite. Foods 2023; 12:2366. [PMID: 37372577 DOI: 10.3390/foods12122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A Pickering emulsion was prepared using β-cyclodextrin (β-CD) and a cinnamaldehyde (CA)/β-CD composite as emulsifiers and corn oil, camellia oil, lard oil, and fish oil as oil phases. It was confirmed that Pickering emulsions prepared with β-CD and CA/β-CD had good storage stability. The rheological experiments showed that all emulsions had G' values higher than G″, thus confirming their gel properties. The results of temperature scanning rheology experiments revealed that the Pickering emulsion prepared with β-CD and CA/β-CD composites had high stability, in the range of 20-65 °C. The chewing properties of Pickering emulsions prepared by β-CD and corn oil, camellia oil, lard, and herring oil were 8.02 ± 0.24 N, 7.94 ± 0.16 N, 36.41 ± 1.25 N, and 5.17 ± 0.13 N, respectively. The chewing properties of Pickering emulsions made with the CA/β-CD composite and corn oil, camellia oil, lard, and herring oil were 2.51 ± 0.05 N, 2.56 ± 0.05 N, 22.67 ± 1.70 N, 3.83 ± 0.29 N, respectively. The texture properties confirmed that the CA/β-CD-composite-stabilized-emulsion had superior palatability. After 28 days at 50 °C, malondialdehyde (MDA) was detected in the emulsion. Compared with the β-CD and CA + β-CD emulsion, the CA/β-CD composite emulsion had the lowest content of MDA (182.23 ± 8.93 nmol/kg). The in vitro digestion results showed that the free fatty acid (FFA) release rates of the CA/β-CD composite emulsion (87.49 ± 3.40%) were higher than those of the β-CD emulsion (74.32 ± 2.11%). This strategy provides ideas for expanding the application range of emulsifier particles and developing food-grade Pickering emulsions with antioxidant capacity.
Collapse
Affiliation(s)
- Caihua Liu
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yachao Tian
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zihan Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Enhancement of the intestinal permeability of curcumin using Pickering emulsions stabilized by starch crystals and chitosan. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Gao H, Huang X, Xie Y, Fang S, Chen W, Zhang K, Chen X, Zou L, Liu W. Improving the gastrointestinal activity of probiotics through encapsulation within biphasic gel water-in-oil emulsions. Food Funct 2022; 13:11455-11466. [PMID: 36148831 DOI: 10.1039/d2fo01939f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of probiotics encapsulation strategies has always been a hot topic due to the high sensitivity of probiotics to processing, storage and the gastrointestinal environment. In this study, water in oil (W/O) emulsions of single-phase or dual-phase gels were constructed through the water phase, oil phase alone or all gels. And the W/O emulsions were used to encapsulate Bifidobacterium lactis V9. The effects of water, oil and biphasic gels on the physicochemical properties of the emulsion and the probiotic activity were investigated. Water, oil and biphasic gels contribute to the stability of emulsions. Oil-phase gels make the emulsion form a solid-like texture, while water-phase gels have no significant effect on the liquidity of the emulsion. The microscopic image shows that the probiotics were completely encapsulated in the internal aqueous phase due to the excellent water affinity of probiotic powder. In addition, all W/O emulsions retain higher probiotic activity, which is attributed to good physical isolation during the gastric phase, while oil-phase and biphasic gel emulsions have high probiotic activity after intestinal digestion due to reduced lipid digestion by oil-phase gels. A liquid or solid-state encapsulated probiotic emulsion has been developed and can be used as a coating sauce, solid fat, etc., which can provide additional ideas for probiotic encapsulation systems and functional food development.
Collapse
Affiliation(s)
- Hongxia Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Xin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Youfa Xie
- Jiangzhong Pharmaceutical Co. LTD, Nanchang, 330041, Jiangxi, PR China
| | - Suqiong Fang
- Sirio Pharma Co., Ltd., Shantou, Guangdong 515041, China
| | - Wenrong Chen
- Sirio Pharma Co., Ltd., Shantou, Guangdong 515041, China
| | - Kui Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China. .,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
6
|
Pectin degree of esterification influences rheology and digestibility of whey protein isolate-pectin stabilized bilayer oil-in-water nanoemulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|