1
|
Liu Z, Liu J, Tang R, Zhang Z, Tian S. Procyanidin B1 and Coumaric Acid from Highland Barley Alleviated High-Fat-Diet-Induced Hyperlipidemia by Regulating PPARα-Mediated Hepatic Lipid Metabolism and Gut Microbiota in Diabetic C57BL/6J Mice. Foods 2024; 13:1843. [PMID: 38928784 PMCID: PMC11202444 DOI: 10.3390/foods13121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
A whole-grain highland barley (WHB) diet has been recognized to exhibit the potential for alleviating hyperlipidemia, which is mainly characterized by lipids accumulation in the serum and liver. Previously, procyanidin B1 (PB) and coumaric acid (CA) from WHB were found to alleviate serum lipid accumulation in impaired glucose tolerance mice, while the effect on modulating the hepatic lipid metabolism remains unknown. In this study, the results showed the supplementation of PB and CA activated the expression of peroxisome proliferator-activated receptor α (PPARα) and the target genes of cholesterol 7-α hydroxylase (CYP7A1) and carnitine palmitoyl transferase I (Cpt1) in the liver cells of high-fat-diet (HFD)-induced diabetic C57BL/6J mice, resulting in decreases in the serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL-C) contents, and an increase in the high-density lipoprotein (HDL-C) content. High-throughput sequencing of 16S rRNA indicated that supplementation with PB and CA ameliorated the gut microbiota dysbiosis, which was associated with a reduction in the relative abundance of Ruminococcaceae and an increase in the relative abundance of Lactobacillus, Desulfovibrio, and Akkermansia. Spearman's correlation analysis revealed that these genera were closely related to obesity-related indices. In summary, the activation of PPARα expression by PB and CA from WHB was important for the alleviation of hyperlipidemia and the structural adjustment of the gut microbiota.
Collapse
Affiliation(s)
- Zehua Liu
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (J.L.); (R.T.); (Z.Z.); (S.T.)
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou 450001, China
| | - Jianshen Liu
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (J.L.); (R.T.); (Z.Z.); (S.T.)
| | - Ruoxin Tang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (J.L.); (R.T.); (Z.Z.); (S.T.)
| | - Zhaowan Zhang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (J.L.); (R.T.); (Z.Z.); (S.T.)
| | - Shuangqi Tian
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (J.L.); (R.T.); (Z.Z.); (S.T.)
| |
Collapse
|
2
|
Gao N, Liu Y, Liu G, Liu B, Cheng Y. Sanghuangporus vaninii extract ameliorates hyperlipidemia in rats by mechanisms identified with transcriptome analysis. Food Sci Nutr 2024; 12:3360-3376. [PMID: 38726415 PMCID: PMC11077191 DOI: 10.1002/fsn3.4002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 05/12/2024] Open
Abstract
The increasing incidence of hyperlipidemia is a serious threat to public health. The development of effective and safe lipid-lowering drugs with few side effects is necessary. The purpose of this study was to assess the lipid-lowering activity of Sanghuangporus vaninii extract (SVE) in rat experiments and reveal the molecular mechanism by transcriptome analysis. Hyperlipidemia was induced in the animals using a high-fat diet for 4 weeks. At the end of the 4th week, hyperlipidemic rats were assigned into two control groups (model and positive simvastatin control) and three treatment groups that received SVE at 200, 400, or 800 mg kg-1 day-1 for another 4 weeks. A last control group comprised normal chow-fed rats. At the end of the 8th week, rats were sacrificed and lipid serum levels, histopathology, and liver transcriptome profiles were determined. SVE was demonstrated to relieve the lipid disorder and improve histopathological liver changes in a dose-dependent manner. The transcriptomic analysis identified changes in hepatocyte gene activity for major pathways including steroid biosynthesis, bile secretion, cholesterol metabolism, AMPK signaling, thyroid hormone signaling, and glucagon signaling. The changed expression of crucial genes in the different groups was confirmed by qPCR. Collectively, this study revealed that SVE could relieve hyperlipidemia in rats, the molecular mechanism might be to promote the metabolism of lipids and the excretion of cholesterol, inhibit the biosynthesis of cholesterol by activating the AMPK signaling pathway, the thyroid hormone signaling pathway, and the glucagon signaling pathway.
Collapse
Affiliation(s)
- Ning Gao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of EducationHarbinChina
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Yuanzhen Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of EducationHarbinChina
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Guangjie Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of EducationHarbinChina
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Bo Liu
- School of Pharmaceutical EngineeringHeilongjiang Agricultural Reclamation Vocational CollegeHarbinChina
| | - Yupeng Cheng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of EducationHarbinChina
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| |
Collapse
|
3
|
Zhao T, Chen Q, Chen Z, He T, Zhang L, Huang Q, Liu W, Zeng X, Zhang Y. Anti-obesity effects of mulberry leaf extracts on female high-fat diet-induced obesity: Modulation of white adipose tissue, gut microbiota, and metabolic markers. Food Res Int 2024; 177:113875. [PMID: 38225139 DOI: 10.1016/j.foodres.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Mulberry leaves (MLs) are reported to have beneficial effects in modulating obesity in male models. However, the impact of different types of mulberry leaf extracts (MLEs) on female models, specifically their influence on adipocytes, gut microbiota, and related metabolic markers, remains poorly understood. In this study, we observed a strong correlation between the total phenolic content (TPC), antioxidant and adipocyte modulation effects of water extracted MLEs. HB-W (water-extracted baiyuwang) and HY-W (water-extracted Yueshen) demonstrated remarkable inhibition effects on adipocytes in 3 T3-L1 adipocytes model. Moreover, MLEs effectively reduced the levels of triglycerides (TG), non-esterified fatty acids (NEFA), and total cholesterol (T-CHO) in adipocytes in vitro. In vivo experiments conducted on female mice with high fat diet (HFD)-induced obesity revealed the anti-obesity effects of HB-W and HY-W, leading to a significant decrease in weight gain rates and notable influence on the ratios of adipose tissue, particularly white adipose tissue (WAT). Gene expression analysis demonstrated the up-regulation of WAT-related genes (Pla2g2a and Plac8) by HB-W, while HY-W supplementation showed beneficial effects on the regulation of blood sugar-related genes. Furthermore, both HB-W and HY-W exhibited modulatory effects on obesity-related gut microbiota (Firmicutes-to-Bacteroidetes ratio) and short chain fatty acid (SCFA) contents. Importantly, they also mitigated abnormalities in liver function and uncoupling protein 1 (UPC1) expression. Overall, our findings underscore the anti-obesity effects of MLEs in female rats with high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China; Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States.
| | - Qirong Chen
- Guangzhou Coobase Biotechnology Co., Ltd, Guangzhou, Guangdong 511493, China
| | - Zhang Chen
- Guangzhou Coobase Biotechnology Co., Ltd, Guangzhou, Guangdong 511493, China
| | - Taoping He
- Guangzhou Coobase Biotechnology Co., Ltd, Guangzhou, Guangdong 511493, China
| | - Lijun Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States
| | - Weifeng Liu
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China
| | - Xi Zeng
- Guangzhou Institute for Food Control, Guangzhou, Guangdong 511400, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China.
| |
Collapse
|
4
|
Li X, Wang L. Highland barley attenuates high fat and cholesterol diet induced hyperlipidemia in mice revealed by 16S rRNA gene sequencing and untargeted metabolomics. Life Sci 2023; 334:122142. [PMID: 37797689 DOI: 10.1016/j.lfs.2023.122142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
AIMS In this study, highland barley (HB), HB bran (HBB) and whole grain HB (WGHB) alleviating hyperlipemia and liver inflammation in high fat and cholesterol diet (HFCD) mice was investigated. METHODS All 50 ICR mice were randomly allocated to 5 treatment groups: Normal control group, HFCD group, HB group, HBB group and WGHB group. The serum lipid profiles, liver and epididymal adipocyte histology, gut microbiota and untargeted metabolomics were adopted. KEY FINDINGS The results suggested that HB especially HBB supplement could obviously decrease BW and BWG. Serum lipid profiles showed that HB especially HBB decreased TG, TC, LDL-C, ALT and AST levels while increased HDL-C level. Liver and epididymal adipocyte H&E staining also confirmed that hepatic injury and adipose accumulation were alleviated by HB especially HBB. Gut microbiota analysis indicated that HBB increased Bacteroidetes/Firmicutes ratio, Lactobacillus and Akkermansia muciniphila abundances while decreased Proteobacteria and Shigella abundances. Untargeted metabolomics results showed that HBB significantly increased deoxycholic acid levels compared with HFCD mice and HBB regulated arachidonic acid metabolism pathway. SIGNIFICANCE The obtained results provided important information about the processing of highland barley to retain its hypolipidemic effect and improve its acceptability and biosafety, and had a guiding effect on the development of HB products.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
5
|
Han Q, Li H, Zhao F, Gao J, Liu X, Ma B. Auricularia auricula Peptides Nutritional Supplementation Delays H 2O 2-Induced Senescence of HepG2 Cells by Modulation of MAPK/NF-κB Signaling Pathways. Nutrients 2023; 15:3731. [PMID: 37686763 PMCID: PMC10489780 DOI: 10.3390/nu15173731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Auricularia auricula is a traditional medicinal and edible mushroom with anti-aging effects. Many studies focused on polysaccharides and melanin. However, the anti-aging effects and mechanism of the nutritional supplementation of Auricularia auricula peptides (AAPs) were not elucidated. In this study, AAPs were prepared by enzymolysis of flavor protease and the protective effects on H2O2-induced senescence of HepG2 cells were explored for the first time. The potential mechanism was also investigated. AAPs were mostly composed of low molecular weights with less than 1000 Da accounting for about 79.17%, and contained comprehensive amino acids nutritionally, including seven essential amino acids, aromatic, acidic, and basic amino acids. AAPs nutritional supplementation could significantly decrease the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), and increase the activities of antioxidant enzymes (SOD, CAT, and GSH-Px). In addition, the senescence-associated-β-galactosidase (SA-β-gal) activity was restrained, and the expression levels of senescence-associated secretory phenotype (SASP) (IL-6, IL-8, IL-1β, and CXCL2) were also decreased. Ribonucleic acid sequencing (RNA-Seq) was carried out to screen the differentially expressed genes (DEGs) between different groups. GO and KEGG enrichment analysis showed that the mechanism was related to the MAPK/NF-κB signaling pathways. Quantitative real-time PCR (qRT-PCR) analysis and Western blot were carried out to verify the key genes and proteins in the pathways, respectively. AAPs nutritional supplementation resulted a significant down-regulation in key the genes c-fos and c-jun and up-regulation in DUSP1 of the MAPK signaling pathway, and down-regulation in the key genes CXCL2 and IL-8 of the NF-κB signaling pathway. The results of Western blot demonstrate that AAPs nutritional supplementation could inhibit MAPK/NF-κB pathways by reducing the expression levels of IKK, IκB, P65, and phosphorylation of ERK, thus decreasing the inflammatory reaction and delaying cell senescence. It is the first time that AAPs nutritional supplementation was proved to have protective effects on H2O2-induced oxidative damage in HepG2 cells. These results implicate that dietary AAPs could be used as nutrients to reduce the development or severity of aging.
Collapse
Affiliation(s)
- Qianwen Han
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Haiyan Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Fen Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Ji’an Gao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Biao Ma
- Beijing Science Sun Pharmaceutical Co., Ltd., Beijing 100176, China;
| |
Collapse
|
6
|
Guo F, Xiong H, Tsao R, Wen X, Liu J, Chen D, Jiang L, Sun Y. Multi-omics reveals that green pea ( Pisum sativum L.) hull supplementation ameliorates non-alcoholic fatty liver disease via the SHMT2/glycine/mTOR/PPAR-γ signaling pathway. Food Funct 2023; 14:7195-7208. [PMID: 37462466 DOI: 10.1039/d3fo01771k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Diets rich in various active ingredients may be an effective intervention strategy for non-alcoholic fatty liver disease (NAFLD). The green pea hull (GPH) is a processing by-product of green peas rich in dietary fiber and polyphenols. Here, a mouse model of NAFLD induced by DSS + high-fat diet (HFD) was established to explore the intervention effect of the GPH. The results showed that dietary supplements with the GPH can inhibit obesity and reduce lipid accumulation in the mouse liver to prevent liver fibrosis. GPH intervention can improve liver antioxidant capacity, reduce blood lipid deposition and maintain glucose homeostasis. DSS-induced disruption of the intestinal barrier aggravates NAFLD, which may be caused by the influx of large amounts of LPS. A multi-omics approach combining metabolomics and transcriptomic analysis indicated that glycine was the key target and its content was decreased in the liver after GPH intervention, and that dietary supplements with the GPH can relieve NAFLD via the SHMT2/glycine/mTOR/PPAR-γ signaling pathway, which was further supported by liver-associated protein expression. In conclusion, our study demonstrated that dietary GPH can significantly ameliorate NAFLD, and the future development of related food products can enhance the economic value of the GPH.
Collapse
Affiliation(s)
- Fanghua Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Xushen Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Jiahua Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Dongying Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
7
|
Feng Q, Niu Z, Zhang S, Wang L, Dong L, Hou D, Zhou S. Protective Effects of White Kidney Bean ( Phaseolus vulgaris L.) against Diet-Induced Hepatic Steatosis in Mice Are Linked to Modification of Gut Microbiota and Its Metabolites. Nutrients 2023; 15:3033. [PMID: 37447359 PMCID: PMC10347063 DOI: 10.3390/nu15133033] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Disturbances in the gut microbiota and its derived metabolites are closely related to the occurrence and development of hepatic steatosis. The white kidney bean (WKB), as an excellent source of protein, dietary fiber, and phytochemicals, has recently received widespread attention and might exhibit beneficial effects on a high-fat diet (HFD)-induced hepatic steatosis via targeting gut microbiota and its metabolites. The results indicated that HFD, when supplemented with WKB for 12 weeks, could potently reduce obesity symptoms, serum lipid profiles, and glucose, as well as improve the insulin resistance and liver function markers in mice, thereby alleviating hepatic steatosis. An integrated fecal microbiome and metabolomics analysis further demonstrated that WKB was able to normalize HFD-induced gut dysbiosis in mice, thereby mediating the alterations of a wide range of metabolites. Particularly, WKB remarkably increased the relative abundance of probiotics (Akkermansiaceae, Bifidobacteriaceae, and norank_f_Muribaculaceae) and inhibited the growth of hazardous bacteria (Mucispirillum, Enterorhabdus, and Dubosiella) in diet-induced hepatic steatosis mice. Moreover, the significant differential metabolites altered by WKB were annotated in lipid metabolism, which could ameliorate hepatic steatosis via regulating glycerophospholipid metabolism. This study elucidated the role of WKB from the perspective of microbiome and metabolomics in preventing nonalcoholic fatty liver disease, which provides new insights for its application in functional foods.
Collapse
Affiliation(s)
- Qiqian Feng
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Zhitao Niu
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Siqi Zhang
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lijun Dong
- Beijing Yushiyuan Food Co., Ltd., Beijing 101407, China
| | - Dianzhi Hou
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Sumei Zhou
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
8
|
Alteration of fecal microbiome and metabolome by mung bean coat improves diet-induced non-alcoholic fatty liver disease in mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Hou D, Feng Q, Tang J, Shen Q, Zhou S. An update on nutritional profile, phytochemical compounds, health benefits, and potential applications in the food industry of pulses seed coats: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:1960-1982. [PMID: 35930027 DOI: 10.1080/10408398.2022.2105303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pulses, as a sustainable source of nutrients, are an important choice for human diets, but vast quantities of seed coats generated in pulses processing are usually discarded or used as low-value ruminant feed. It has been demonstrated that pulses seed coats are excellent sources of dietary nutrients and phytochemicals with potential health benefits. With growing interest in the sustainable use of resources and the circular economy, utilization of pulses seed coats to recover these valuable components is a core objective for their valorization and an important step toward agricultural sustainability. This review comprehensively provides a comprehensive insight on the nutritional and phytochemical profiles presented in pulses seed coats and their health benefits obtained from the findings of in vitro and in vivo studies. Furthermore, in the food industry, pulses seed coats can be acted as potential food ingredients with nutritional, antioxidant and antimicrobial characteristics or as the matrix or active components of films for food packaging and edible coatings. A better understanding of pulses seed coats may provide a reference for increasing the overall added value and realizing the pulses' sustainable diets.
Collapse
Affiliation(s)
- Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China.,College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, China
| | - Qiqian Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jian Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|