1
|
Huang SY, Mayasari NR, Tung TH, Lin WL, Tseng SH, Chang CC, Huang HY, Chang JS. Weight loss induced by a hypocaloric diet with or without fish oil supplementation re-established iron and omega-3 fatty acid homeostasis in middle-aged women with obesity: A post-hoc analysis of a randomized controlled trial. Maturitas 2024; 184:107948. [PMID: 38447232 DOI: 10.1016/j.maturitas.2024.107948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Middle-aged women with obesity are at increased risk of iron overload and iron disorder is known to disrupt n-3 polyunsaturated fatty acid homeostasis. We evaluated relationships between pretreatment hemoglobin and n-3 polyunsaturated fatty acid levels, and tested whether pretreatment hemoglobin contributed to inter-individual variability in weight loss with special focus on changes in body weight, iron and n-3 polyunsaturated fatty acid profiles. STUDY DESIGN 117 middle and older aged women with obesity and more than two metabolic abnormalities were randomized to a 12-week hypocaloric diet without or with fish oil supplementation. Blood iron biomarker and erythrocyte membrane phospholipid profiles were evaluated. MAIN OUTCOME The absolute change from baseline to week 12 in serum iron and erythrocyte n-3 polyunsaturated fatty acid levels according to pretreatment hemoglobin tertiles and fish oil supplementation. RESULTS A Pearson correlation analysis showed that pretreatment hemoglobin levels were negatively correlated with linoleic acid (r = -0.231), α-linoleic acid (r = -0.279), and n-3 polyunsaturated fatty acid (r = -0.217) (all p < 0.05). Dietary weight loss markedly enhanced erythrocyte membrane lipids of linoleic acid, α-linoleic acid, and n-6 and n-3 polyunsaturated fatty acid only in those women with the highest pretreatment hemoglobin levels (tertile 3) (all p < 0.05). Fish oil supplementation increased bioavailable iron in women with moderate pretreatment hemoglobin levels (tertile 2) (p < 0.05) and, to a lesser extent, prevented a reduction in circulating iron in those with the lowest hemoglobin levels (tertile 1). CONCLUSION Dietary weight loss is an effective treatment program to manage obesity-related iron and n-3 polyunsaturated fatty acid disorders, particularly for middle-aged women with obesity and iron overload.
Collapse
Affiliation(s)
- Shih-Yi Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Noor Rohmah Mayasari
- Department of Nutrition, Faculty of Sports and Health Sciences, Universitas Negeri Surabaya, Surabaya 60213, Indonesia
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Wen-Ling Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Sung-Hui Tseng
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chun-Chao Chang
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan; Chinese Taipei Society for the Study of Obesity (CTSSO), Taipei 11031, Taiwan.
| |
Collapse
|
2
|
Machado MPR, Gama LA, Beckmann APS, Pinto LA, de Miranda JRDA, Marques RG, Américo MF. Gastric plication surgery changes gastrointestinal and metabolic parameters in an obesity-induced high-fat diet model. Neurogastroenterol Motil 2024; 36:e14717. [PMID: 37994287 DOI: 10.1111/nmo.14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 09/19/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Obesity treatment includes less invasive procedures such as gastric plication (GP) surgery; however, its effects on gastrointestinal (GI) motility parameters are underestimated. We aimed to verify the metabolic and gastrointestinal effects of GP surgery in the rat obesity model. METHODS A high-fat diet-induced obesity was used. Animals were allocated to four experimental groups: control sham (n = 6); control GP (n = 10); obese sham (n = 6); and obese GP (n = 10). Nutritional and murinometric parameters, gastric motility, glucose tolerance, histopathology, fat depots, leptin, and lipoproteins levels were evaluated 30 days after surgery. Data were analyzed by ANOVA followed by post Tukey or Kruskal-Wallis test followed by Dunn's multiple comparisons test. KEY RESULTS Gastric plication decreased leptin levels, feed efficiency, and body weight gain. GP does not improve lipid profile in obese animals and however, ameliorates glucose tolerance in control and obese rats. GP did not improve the gastric emptying time or normalize the frequency of contractions disturbed by obesity. Surgery provides a remodeling process in the mucosa and muscularis mucosa layers, evidenced by leukocyte infiltration mainly in the mucosa layer. CONCLUSIONS & INFERENCES Our study revealed the influence of the gastrointestinal tract on obesity is underestimated with pieces of evidence pointing out its important role as a target for surgical treatment.
Collapse
Affiliation(s)
- Mariana Pirani Rocha Machado
- São Paulo State University - UNESP, Botucatu, Brazil
- Araguaia Valley University Center (UNIVAR), Barra do Garças, Brazil
| | | | | | | | | | | | | |
Collapse
|
3
|
Faradina A, Tung YT, Chen SH, Liao YC, Chou MJ, Teng IC, Lin WL, Wang CC, Sheu MT, Chou PY, Shih CK, Skalny AV, Tinkov AA, Chang JS. Djulis Hull Enhances the Efficacy of Ferric Citrate Supplementation via Restoring Normal Iron Efflux through the IL-6-Hepcidin-Ferroportin Pathway in High-Fat-Diet-Induced Obese Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16691-16701. [PMID: 37877289 DOI: 10.1021/acs.jafc.3c02826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Obesity-related functional iron disorder remains a major nutritional challenge. We evaluated the effects of djulis hull (DH) on iron metabolism in 50% high-fat-diet-induced obese rats supplemented with ferric citrate (2 g iron/kg diet) for 12 weeks. DH supplementation (5, 10, 15% dry weight/kg diet) significantly increased serum and hepatic iron but decreased appetite hormones, body weight, hepcidin, and liver inflammation (all p < 0.05). The Spearman correlation showed that appetite hormones were negatively associated with iron but positively correlated with liver hepcidin (all p < 0.05). A Western blot analysis showed that DH significantly downregulated hepatic hepcidin through the IL-6-JAK-STAT3 and enhanced ferroportin (Fpn) via the Keap1-Nrf2 and PHD2-HIF-2α. An in vitro study revealed that major bioactive compounds of DH, hexacosanol, and squalene suppressed LPS-induced IL-6 and hepcidin but enhanced Fpn expression in activated THP-1 cells. In conclusion, DH may exert nutraceutical properties for the treatment of functional iron disorder and restoration of iron efflux may have beneficial effects on weight control.
Collapse
Affiliation(s)
- Amelia Faradina
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chi Liao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Meng-Jung Chou
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - I-Chun Teng
- Department of Nutritional Services, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Wen-Ling Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Yu Chou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Anatoly V Skalny
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Yaroslavl State University, 150001 Yaroslavl, Russia
| | - Alexey A Tinkov
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Yaroslavl State University, 150001 Yaroslavl, Russia
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Chinese Taipei Society for the Study of Obesity, CTSSO, Taipei 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
4
|
He X, Yu H, Fang J, Qi Z, Pei S, Yan B, Liu R, Wang Q, Szeto IMY, Liu B, Chen L, Li D. The effect of n-3 polyunsaturated fatty acid supplementation on cognitive function outcomes in the elderly depends on the baseline omega-3 index. Food Funct 2023; 14:9506-9517. [PMID: 37840364 DOI: 10.1039/d3fo02959j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Both epidemiological and preclinical studies have shown the benefits of n-3 polyunsaturated fatty acid (n-3 PUFA) on dementia and cognitive impairment, yet the results of clinical randomized controlled trials (RCTs) performed to date are conflicting. The difference in the baseline omega-3 index (O3i) of subjects is a potential cause for this disparity, yet this is usually ignored. The present meta-analysis aimed to evaluate the effect of n-3 polyunsaturated fatty acid (n-3 PUFA) on cognitive function in the elderly and the role of baseline O3i. A systematic literature search was conducted in PubMed, Embase, Cochrane Library, and Web of Science up to June 27th, 2023. The mean changes in the mini-mental state examination (MMSE) score were calculated as weighted mean differences by using a fixed-effects model. Fifteen random controlled trials were included in the meta-analysis. Pooled analysis showed that n-3 PUFA supplementation did not significantly improve the MMSE score (WMD = 0.04, [-0.08, 0.16]; Z = 0.62, P = 0.53; I2 = 0.00%, P(I2) = 0.49). Out of the 15 studies included in the meta-analysis, only 7 reported O3i at baseline and outcome, so only these 7 articles were used for subgroup analysis. Subgroup analysis showed that the MMSE score was significantly improved in the higher baseline O3i subgroup (WMD = 0.553, [0.01, 1.095]; I2 = 0.00%, P(I2) = 0.556) and higher O3i increment subgroup (WMD = 0.525, [0.023, 1.026]; I2 = 0.00%, P(I2) = 0.545). The overall effect demonstrated that n-3 PUFA supplementation exerted no improvement on global cognitive function. However, a higher baseline O3i and higher O3i increment were associated with an improvement in cognitive function in the elderly.
Collapse
Affiliation(s)
- Xin He
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Hongzhuan Yu
- Weifang Traditional Chinese Hospital, Weifang, China
| | - Jiacheng Fang
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | - Zhongshi Qi
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | - Shengjie Pei
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | - Bei Yan
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | - Run Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | - Qiuzhen Wang
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | | | - Biao Liu
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Lei Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
- Department of Food Science and Nutrition, Zhejiang University, China
- Department of Nutrition, Dietetics and Food, Monash University, Australia
| |
Collapse
|
5
|
Li ZD, Li H, Kang S, Cui YG, Zheng H, Wang P, Han K, Yu P, Chang YZ. The divergent effects of astrocyte ceruloplasmin on learning and memory function in young and old mice. Cell Death Dis 2022; 13:1006. [PMID: 36443285 PMCID: PMC9705310 DOI: 10.1038/s41419-022-05459-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Ceruloplasmin (CP) plays an important role in maintaining iron homeostasis. Cp gene knockout (Cp-/-) mice develop a neurodegenerative disease with aging and show iron accumulation in the brain. However, iron deficiency has also been observed in 3 M Cp-/- mice. The use of systemic Cp gene knockout is insufficient to reveal specific functions for CP in the central nervous system. Considering recent discoveries that astrocytes synthetize the majority of brain CP, we generated astrocyte conditional Cp knockout (CpGfapcKO) mice, and found that iron contents decreased in the cerebral cortex and hippocampus of young (6 M) and old (18 M) CpGfapcKO mice. Further experiments revealed that 6 M CpGfapcKO mice exhibited impaired learning and memory function, while 18 M CpGfapcKO mice exhibited improved learning and memory function. Our study demonstrates that astrocytic Cp deletion blocks brain iron influx through the blood-brain-barrier, with concomitantly increased iron levels in brain microvascular endothelial cells, resulting in brain iron deficiency and down-regulation of ferritin levels in neurons, astrocytes, microglia and oligodendrocytes. At the young age, the synapse density, synapse-related protein levels, 5-hydroxytryptamine and norepinephrine, hippocampal neurogenesis and myelin formation were all decreased in CpGfapcKO mice. These changes affected learning and memory impairment in young CpGfapcKO mice. In old CpGfapcKO mice, iron accumulation with aging was attenuated, and was accompanied by the alleviation of the ROS-MAPK-apoptosis pathway, Tau phosphorylation and β-amyloid aggregation, thus delaying age-related memory decline. Overall, our results demonstrate that astrocytic Cp deletion has divergent effects on learning and memory function via different regulatory mechanisms induced by decreased iron contents in the brain of mice, which may present strategies for the prevention and treatment of dementia.
Collapse
Affiliation(s)
- Zhong-Da Li
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| | - Haiyan Li
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China ,grid.413851.a0000 0000 8977 8425College of Basic Medicine, Chengde Medical University, Chengde, Hebei Province China
| | - Shaomeng Kang
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| | - Yan-Ge Cui
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| | - Huiwen Zheng
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| | - Peina Wang
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| | - Kang Han
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| | - Peng Yu
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| | - Yan-Zhong Chang
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| |
Collapse
|