1
|
Guo Y, Chen X, Gong P, Long H, Wang J, Yang W, Yao W. Siraitia grosvenorii As a Homologue of Food and Medicine: A Review of Biological Activity, Mechanisms of Action, Synthetic Biology, and Applications in Future Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6850-6870. [PMID: 38513114 DOI: 10.1021/acs.jafc.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Siraitia grosvenorii (SG), also known as Luo Han Guo or Monk fruit, boasts a significant history in food and medicine. This review delves into SG's historical role and varied applications in traditional Chinese culture, examining its phytochemical composition and the health benefits of its bioactive compounds. It further explores SG's biological activities, including antioxidant, anti-inflammatory, and antidiabetic properties and elucidates the mechanisms behind these effects. The review also highlights recent synthetic biology advances in enhancing the production of SG's bioactive compounds, presenting new opportunities for broadening their availability. Ultimately, this review emphasizes SG's value in food and medicine, showcasing its historical and cultural importance, phytochemistry, biological functions, action mechanisms, and the role of synthetic biology in its sustainable use.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hui Long
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiating Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
2
|
Cui S, Zang Y, Xie L, Mo C, Su J, Jia X, Luo Z, Ma X. Post-Ripening and Key Glycosyltransferase Catalysis to Promote Sweet Mogrosides Accumulation of Siraitia grosvenorii Fruits. Molecules 2023; 28:4697. [PMID: 37375251 DOI: 10.3390/molecules28124697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Sweet mogrosides are not only the primary bioactive ingredient in Siraitia grosvenorii fruits that exhibit anti-tussive properties and expectorate phlegm, but they are also responsible for the fruit's sweetness. Increasing the content or proportion of sweet mogrosides in Siraitia grosvenorii fruits is significant for improving their quality and industrial production. Post-ripening is an essential step in the post-harvest processing of Siraitia grosvenorii fruits, but the underlying mechanism and condition of post-ripening on Siraitia grosvenorii quality improvement need to be studied systematically. Therefore, this study analyzed the mogroside metabolism in Siraitia grosvenorii fruits under different post-ripening conditions. We further examined the catalytic activity of glycosyltransferase UGT94-289-3 in vitro. The results showed that the post-ripening process of fruits could catalyze the glycosylation of bitter-tasting mogroside IIE and III to form sweet mogrosides containing four to six glucose units. After ripening at 35 °C for two weeks, the content of mogroside V changed significantly, with a maximum increase of 80%, while the increase in mogroside VI was over twice its initial amount. Furthermore, under the suitable catalytic condition, UGT94-289-3 could efficiently convert the mogrosides with less than three glucose units into structurally diverse sweet mogrosides, i.e., with mogroside III as the substrate, 95% of it can converted into sweet mogrosides. These findings suggest that controlling the temperature and related catalytic conditions may activate UGT94-289-3 and promote the accumulation of sweet mogrosides. This study provides an effective method for improving the quality of Siraitia grosvenorii fruits and the accumulation of sweet mogrosides, as well as a new economical, green, and efficient method for producing sweet mogrosides.
Collapse
Affiliation(s)
- Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yimei Zang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Biomedicine College, Beijing City University, Beijing 100094, China
| | - Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jiaxian Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xunli Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
3
|
Systematically Investigating the Pharmacological Mechanism of Momordica grosvenori in the Treatment of Spinal Cord Injury by Network Pharmacology and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:1638966. [PMID: 36743462 PMCID: PMC9891827 DOI: 10.1155/2023/1638966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/27/2023]
Abstract
Objective This study aimed to explore the molecular mechanism of Momordica grosvenori (MG) in spinal cord injury (SCI) by network pharmacology analysis. Methods We searched for potential active MG compounds using the TCMSP database and the BATMAN-TCM platform. The Swiss target prediction database was used to find MG-related targets and the targets of SCI from the CTD, GeneCards, and DrugBank databases. Following that, a protein-protein interaction (PPI) study was carried out. Cytoscape software was used to calculate the hub gene, and R software was used to evaluate the Gene Ontology (GO) and KEGG enrichment pathways. Finally, molecular docking between the hub protein and important compounds was performed. We verified STAT3, MAPK1, HSP90AA1, PIK3R1, PIK3CA, and RXRA potential targets by quantitative PCR. Results We obtained 293 MG-anti-SCI targets with potential therapeutic utility by intersecting 346 MG-related targets and 7214 SCI-related targets. The top 10 identified genes, ranking in descending order of value, were SRC, STAT3, MAPK1, HSP90AA1, PIK3R1, PIK3CA, RXRA, AKT1, CREBBP, and JAK2. Through enrichment analysis and literature search, 10 signaling pathways were screened out. The molecular docking of important drugs and hub targets revealed that some had a higher binding affinity. The results of quantitative PCR indicated that MAPK1, RXRA, and STAT3 were expressed differently in in vitro experiments. Conclusion In conclusion, the current work indicated that MG might play an anti-SCI role via multicomponent, multitarget, and multichannel interaction, which presents a novel idea for further research into the precise mechanism of MG-anti-SCI interaction.
Collapse
|
4
|
Lu R, Hu J, Liu X, Yu L, Hu J, Jiang H, Liu S, Li M, He J, Yang X, Liang X. Mogroside-rich extract from Siraitia grosvenorii fruits protects against heat stress-induced intestinal damage by ameliorating oxidative stress and inflammation in mice. Food Funct 2023; 14:1238-1247. [PMID: 36625098 DOI: 10.1039/d2fo02179j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Global warming makes humans and animals more vulnerable to heat stress. Heat stress can cause multiorgan dysfunction, especially in the intestine, primarily via oxidative stress and inflammation. Mogroside-rich extract (MGE) is the active ingredient of Siraitia grosvenorii and has significant antioxidant and anti-inflammatory activity. However, whether MGE can alleviate the intestinal damage caused by heat stress has not been explored. In this study, mice were given 600 mg kg-1 MGE followed by exposure to high temperature (40 °C for 2 h per day), and the structures and molecular changes in the ileum were examined. Our findings showed that body weight was decreased by heat stress, while the activity of serum superoxide dismutase (SOD) was increased. We further found that heat stress impaired the intestinal barrier by reducing the number of goblet cells and mRNA levels of the tight junction proteins zona occludens protein 1 (ZO-1), Occludin (OCLD) and recombinant mucin 2 (MUC2 mucin), but it increased the mRNA level of trefoil factor 3 (TFF3). Interestingly, MGE treatment reversed these changes. Furthermore, heat stress increased the activity of SOD in the intestine, downregulated the expression of the oxidative stress-related genes glutathione peroxidase 1 (GPX1), SOD2 and nuclear factor erythroid 2-related factor 2 (NRF2), and upregulated the expression of catalase (CAT). Moreover, heat stress increased tumor necrosis factor-α (TNF-α) levels in the intestine and upregulated the expression of the inflammation-related genes interleukin 10 (IL-10), TNF-α, Interferon-γ (IFN-γ), toll like receptor 4 (TLR4) and nuclear factor-kappa B (NF-kB). However, MGE treatment effectively reduced TNF-α levels and restored the normal activity of SOD and normal mRNA levels for both oxidative stress-related and inflammation-related genes. In summary, our results showed that MGE can protect against heat stress-induced intestinal damage by ameliorating inflammation and oxidative stress.
Collapse
Affiliation(s)
- Renhong Lu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiahao Hu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Xinxin Liu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Lijiang Yu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Junjie Hu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Huimin Jiang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Shaoyuan Liu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Mengqi Li
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiakang He
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Xiaogan Yang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
5
|
Wang S, Cui K, Liu J, Hu J, Yan K, Xiao P, Lu Y, Yang X, Liang X. Mogroside-Rich Extract From Siraitia grosvenorii Fruits Ameliorates High-Fat Diet-Induced Obesity Associated With the Modulation of Gut Microbiota in Mice. Front Nutr 2022; 9:870394. [PMID: 35769373 PMCID: PMC9234556 DOI: 10.3389/fnut.2022.870394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/05/2022] [Indexed: 12/29/2022] Open
Abstract
Siraitia grosvenorii is a kind of medicinal food plant. The mogroside-rich extract (MGE) of its fruits can effectively ameliorate obesity, but the underlying mechanisms remain underexplored. In this study, we aimed to determine whether MGE can ameliorate obesity by protecting against the divergences of gut microbiota. Mice were challenged with a high-fat diet (HFD) and treated with MGE by oral gavage. Then, the characteristics of the gut microbiota were determined by 16S rDNA analysis. Our findings showed that MGE could significantly reduce body weight gain and fat tissue weight of the mice fed with HFD. Moreover, MGE markedly attenuated fatty liver, and improved glucose tolerance and insulin sensitivity. We further found that the gut microbiota structures were disturbed by HFD feeding. In particular, the abundance of Firmicutes was increased and the abundance of Bacteroidetes was decreased, resulting in an increased proportion of Firmicutes to Bacteroidetes (F/B), which contributes to obesity. Interestingly, the abnormal proportion of F/B of HFD feeding mice was restored to the level of control mice by MGE treatment. Additionally, the abundances of obesogenic microbiota, such as Ruminiclostridium and Oscillibacter were also decreased after MGE treatment. In summary, our findings demonstrate that MGE can modulate gut microbiota in obese mice and shed new light on how it alleviates obesity.
Collapse
Affiliation(s)
- Siyuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kexin Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiahao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiahao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Peng Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Xiaogan Yang,
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Xingwei Liang,
| |
Collapse
|