1
|
Martin M, Boulaire M, Lucas C, Peltier A, Pourtau L, Gaudout D, Layé S, Pallet V, Joffre C, Dinel AL. Plant Extracts and ω-3 Improve Short-Term Memory and Modulate the Microbiota-Gut-Brain Axis in D-galactose Model Mice. J Nutr 2024:S0022-3166(24)01032-0. [PMID: 39332773 DOI: 10.1016/j.tjnut.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Aging, characterized by a slow and progressive alteration of cognitive functions, is associated with gut microbiota dysbiosis, low-grade chronic inflammation, as well as increased oxidative stress and neurofunctional alterations. Some nutrients, such as polyphenols, carotenoids, and omega (ω)-3 (n-3), are good candidates to prevent age-related cognitive decline, because of their immunomodulatory, antioxidant, and neuroprotective properties. OBJECTIVES The objective of this study was to demonstrate the preventive effect of a combination of plant extracts (PE) containing Memophenol™ (grapes and blueberries polyphenols) and a patented saffron extract (saffron carotenoids and safranal) and ω-3 on cognitive function in a mouse model of accelerated aging and to understand the biological mechanisms involved. METHODS We used an accelerated-aging model by injecting 3-mo-old male C57Bl6/J mice with D-galactose for 8 wk, during which they were fed with a balanced control diet and supplemented or not with PE and/or ω-3 (n = 15-16/group). Short-term memory was evaluated by Y-maze test, following analyses of hippocampal and intestinal RNA expressions, brain fatty acid and oxylipin amounts, and gut microbiota composition (16S rRNA gene sequencing). Statistical analyses were performed (t test, analysis of variance, and Pearson correlation). RESULTS Our results showed that oral administration of PE, ω-3, or both (mix) prevented hippocampus-dependent short-term memory deficits induced by D-galactose (P < 0.05). This effect was accompanied by the modulation of gut microbiota, altered by the treatment. PE and the mix increased the expression of antioxidative and neurogenesis markers, such as catalase and doublecortin, in hippocampus (P < 0.05 for both). Moreover, ω-3 and the mix showed a higher ω-3 amounts (P < 0.05) and EPA-derived 18- hydroxyeicosapentaenoic acid (P < 0.001) in prefrontal cortex. These changes may contribute to the improvement in memory. CONCLUSIONS These results suggest that the mix of PE and ω-3 could be more efficient at attenuating age-related cognitive decline than individual supplementations because it targeted, in mice, the different pathways impaired with aging.
Collapse
Affiliation(s)
- Marie Martin
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - Milan Boulaire
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Céline Lucas
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Adrien Peltier
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Line Pourtau
- Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - David Gaudout
- Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Véronique Pallet
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Corinne Joffre
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Anne-Laure Dinel
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France.
| |
Collapse
|
2
|
Wang B, Tang X, Mao B, Zhang Q, Tian F, Zhao J, Chen W, Cui S. Comparison of the hepatoprotection of intragastric and intravenous cyanidin-3-glucoside administration: focus on the key metabolites and gut microbiota modulation. Food Funct 2024; 15:7441-7451. [PMID: 38904342 DOI: 10.1039/d4fo01608d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Liver injury is a life-threatening condition, and the hepatoprotective potential of cyanidin-3-glucoside (C3G) has been previously demonstrated. However, due to the low bioavailability, it has been doubtful that relatively low concentrations of intact C3G in vivo could account for these bioactivities. In this study, the hepatoprotective effects of intragastric and intravenous administration of C3G were investigated in a CCl4 induced liver injury model. Intragastric C3G administration was more effective than intravenous C3G injection in reducing serum damage biomarkers, oxidative stress, and inflammatory responses, indicating that absorption of C3G into the bloodstream does not fully account for its observed benefits in vivo. Furthermore, intragastric C3G administration modulated the gut microbiota structure and increased the contents of five metabolites in the feces and serum with high inter-individual variation, indicating the key role of the interaction between C3G and the gut microbiota. At equivalent doses, the metabolites cyanidin and protocatechuic acid exhibited greater efficacy than C3G in reducing apoptosis and ROS production by activating the Nrf2 pathway in an AAPH-induced oxidative stress model. To achieve the desired health effects via C3G-rich food intake, more attention should be paid to microbially derived catabolites. Screening of specific metabolite-producing strains will help overcome individual differences and enhance the health-promoting effects of C3G.
Collapse
Affiliation(s)
- Bulei Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| |
Collapse
|
3
|
Li Y, Chen X, He J, Zheng P, Luo Y, Yu B, Chen D, Huang Z. Grape seed proanthocyanidin extract promotes skeletal muscle fiber type transformation through modulation of cecal microbiota and enhanced butyric acid production. J Food Sci 2024; 89:3788-3801. [PMID: 38638069 DOI: 10.1111/1750-3841.17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
The conversion of fast-twitch fibers into slow-twitch fibers within skeletal muscle plays a crucial role in improving physical stamina and safeguarding against metabolic disorders in individuals. Grape seed proanthocyanidin extract (GSPE) possesses numerous pharmacological and health advantages, effectively inhibiting the onset of chronic illnesses. However, there is a lack of research on the specific mechanisms by which GSPE influences muscle physiology and gut microbiota. This study aims to investigate the role of gut microbiota and their metabolites in GSPE regulation of skeletal muscle fiber type conversion. In this experiment, 54 male BALB/c mice were randomly divided into three groups: basal diet, basal diet supplemented with GSPE, and basal diet supplemented with GSPE and antibiotics. During the feeding period, glucose tolerance and forced swimming tests were performed. After euthanasia, samples of muscle and feces were collected for analysis. The results showed that GSPE increased the muscle mass and anti-fatigue capacity of the mice, as well as the expression of slow-twitch fibers. However, the beneficial effects of GSPE on skeletal muscle fibers disappeared after adding antibiotics to eliminate intestinal microorganisms, suggesting that GSPE may play a role by regulating intestinal microbial structure. In addition, GSPE increased the relative abundance of Blautia, Muribaculaceae, and Enterorhabdus, as well as butyrate production. Importantly, these gut microbes exhibited a significant positive correlation with the expression of slow-twitch muscle fibers. In conclusion, supplementation with GSPE can increase the levels of slow-twitch fibers by modulating the gut microbiota, consequently prolonging the duration of exercise before exhaustion. PRACTICAL APPLICATION: This research suggests that grape seed proanthocyanidin extract (GSPE) has potential applications in improving physical stamina and preventing metabolic disorders. By influencing the gut microbiota and increasing butyric acid production, GSPE contributes to the conversion of fast-twitch muscle fibers into slow-twitch fibers, thereby enhancing anti-fatigue capacity and exercise endurance. While further studies are needed, incorporating GSPE into dietary supplements or functional foods could support individuals seeking to optimize their exercise performance and overall metabolic health.
Collapse
Affiliation(s)
- Yiqiang Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
4
|
Zhong R, Shen L, Fan Y, Luo Q, Hong R, Sun X, Zhou X, Wan J. Anti-aging mechanism and effect of treatment with raw and wine-steamed Polygonatum sibiricum on D-galactose-induced aging in mice by inhibiting oxidative stress and modulating gut microbiota. Front Pharmacol 2024; 15:1335786. [PMID: 38774211 PMCID: PMC11106437 DOI: 10.3389/fphar.2024.1335786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/04/2024] [Indexed: 05/24/2024] Open
Abstract
Background Polygonatum sibiricum (PS) is a traditional Chinese medicine (TCM) first recorded in Mingyi Bielu. The book documents that PS can nourish five internal organs, be taken for a long time, relax the body and prolong lifespan. Presently, PS is widely used in TCM to prevent premature graying of hair. Based on TCM theory and clinical trials, the wine steaming processed product from PS provides a better effect. However, no published study has elucidated the anti-aging mechanism. Purpose The study aim was to investigate the anti-aging mechanism of PS and its wine steaming processed product in mice, specifically focusing on the effect of D-galactose (D-gal) surrounding the intestinal flora and the Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2-antioxidant response elements (Keap1/Nrf2/ARE) pathway. Methods The chemical components in Raw PS (RPS) and Wine-steamed PS (WPS) were identified by ultra-performance liquid chromatography-hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS). An aging model using Kunming mice was established through intraperitoneally injected D-gal. Concentrations of RPS and WPS at 5, 10, or 15 g/kg/day levels were administered intragastrically, respectively. The body weight, liver and spleen indexes, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) activities in serum and brain tissue were recorded. Hematoxylin and eosin (HE) stained brain tissue was histopathologically examined. The expressions of Keap1, Nrf2 and heme oxygenase 1 (HO-1) in the brain tissue at the mRNA and protein levels were respectively detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot (WB). Moreover, an Illumina Hiseq platform was used for 16S ribosomal RNA (16S rRNA) high-throughput sequencing to evaluate the proportions of intestinal flora in aging mice. Results The proportions of saccharides, flavonoids, and triterpene acids were different between RPS and WPS. In the aging model mice, WPS outperformed RPS in improving body weight and mental state by increasing the spleen index, SOD and GSH-PX activities, decreasing the liver index and MDA activities, and restoring the histopathological morphology in D-gal-induced aging mice. At the mRNA levels, RPS and WPS significantly reduced the expression of Keap1 and increased the expressions of Nrf2 and HO-1. The trend in protein expressions was similar to that of the mRNA results, and WPS had a stronger effect than RPS. Fecal microbiota analysis showed that RPS and WPS restored intestinal microbiota proportions to normal levels. Conclusion The results demonstrated that PS and its WPS had a positive effect in relieving oxidative stress in aging mice. WPS outperformed RPS, which might be related to the activation of the Keap1/Nrf2/ARE pathway and regulation of intestinal flora.
Collapse
Affiliation(s)
- Ruixue Zhong
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Ling Shen
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yilin Fan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qiaomei Luo
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ran Hong
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xiaoli Sun
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xia Zhou
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jun Wan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
5
|
Xiao Y, Feng Y, Zhao J, Chen W, Lu W. Achieving healthy aging through gut microbiota-directed dietary intervention: Focusing on microbial biomarkers and host mechanisms. J Adv Res 2024:S2090-1232(24)00092-4. [PMID: 38462039 DOI: 10.1016/j.jare.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Population aging has become a primary global public health issue, and the prevention of age-associated diseases and prolonging healthy life expectancies are of particular importance. Gut microbiota has emerged as a novel target in various host physiological disorders including aging. Comprehensive understanding on changes of gut microbiota during aging, in particular gut microbiota characteristics of centenarians, can provide us possibility to achieving healthy aging or intervene pathological aging through gut microbiota-directed strategies. AIM OF REVIEW This review aims to summarize the characteristics of the gut microbiota associated with aging, explore potential biomarkers of aging and address microbiota-associated mechanisms of host aging focusing on intestinal barrier and immune status. By summarizing the existing effective dietary strategies in aging interventions, the probability of developing a diet targeting the gut microbiota in future is provided. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key notions: Firstly, gut microbiota has become a new target for regulating health status and lifespan, and its changes are closely related to age. Thus, we summarized aging-associated gut microbiota features at the levels of key genus/species and important metabolites through comparing the microbiota differences among centenarians, elderly people and younger people. Secondly, exploring microbiota biomarkers related to aging and discussing future possibility using dietary regime/components targeted to aging-related microbiota biomarkers promote human healthy lifespan. Thirdly, dietary intervention can effectively improve the imbalance of gut microbiota related to aging, such as probiotics, prebiotics, and postbiotics, but their effects vary among.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
6
|
Ye C, Gao ZH, Bie ZY, Chen KQ, Lu FG, Wei K. MXSGD alleviates CsA-induced hypoimmunity lung injury by regulating microflora metabolism. Front Immunol 2024; 14:1298416. [PMID: 38259457 PMCID: PMC10801022 DOI: 10.3389/fimmu.2023.1298416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Context Ma Xing Shi Gan Decoction (MXSGD) is a traditional remedy for treating lung injuries that was developed by the Typhoid and Fever School of Pharmaceutical Biology. It has antitussive and expectorant effects, anti-inflammatory, antiviral, regulates the body's immunity, etc. Aim The aim of this study is to investigate whether MXSGD can ameliorate cyclosporine A (CsA)-induced hypoimmunity lung injury by regulating microflora metabolism. Methods: Establishment of a model for CsA-induced hypoimmunity lung injury. Using 16S rRNA high-throughput sequencing and LC-MS, the effects of MXSGD on gut flora and lung tissue microecology of mice with CsA-induced hypoimmunity were investigated. Results MXSGD was able to preserve lung tissue morphology and structure, reduce serum inflammatory marker expression and protect against CsA-induced lung tissue damage. Compared to the model, MXSGD increased beneficial gut bacteria: Eubacterium ventriosum group and Eubacterium nodatum group; decreased intestinal pathogens: Rikenellaceae RC9 intestinal group; reduced the abundance of Chryseobacterium and Acinetobacter, promoted the production of Lactobacillus and Streptococcus, and then promoted the lung flora to produce short-chain fatty acids. MXSGD was able to enhance the expression of serum metabolites such as Americine, 2-hydroxyhexadecanoylcarnitine, Emetine, All-trans-decaprenyl diphosphate, Biliverdin-IX-alpha, Hordatin A and N-demethyl mifepristone in the CsA-induced hypoimmunity lung injury model. Conclusion MXSGD can restore gut and lung microbiota diversity and serum metabolite changes to inhibit inflammation, ameliorate CsA-induced hypoimmunity lung injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Wei
- Hunan University of Chinese Medicine, Hunan, China
| |
Collapse
|
7
|
Liu J, Li K, Li S, Yang G, Lin Z, Miao Z. Grape seed-derived procyanidin inhibits glyphosate-induced hepatocyte ferroptosis via enhancing crosstalk between Nrf2 and FGF12. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155278. [PMID: 38103315 DOI: 10.1016/j.phymed.2023.155278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/11/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Glyphosate (GLY) exposure induces hepatocyte ferroptosis through overproduction of reactive oxygen species, regarded as an important contributor to liver damage. Grape seed-derived procyanidin (GSDP) has been reported to be an effective antioxidant, but whether and, if any, how GSDP can attenuate GLY-induced liver injury via inhibiting ferroptosis is unclear. PURPOSE The current study aimed to investigate the hepato-protective effects and possible mechanisms of GSDP. METHODS GLY-induced liver damage mice model was established to explore the hepatoprotective roles of GSPE in vivo. Subsequently, bioinformatics methodology was used to predict the key pathways and factors related to the action targets of GSPE against hepatocyte ferroptosis. Finally, we explored the roles of nuclear factor E2 related factor 2 (Nrf2) and fibroblast growth factor 21 (FGF21) in blunting GLY-induced liver damage via suppressing ferroptosis in vitro. RESULTS GSDP exerts hepato-protective effects in vivo and in vitro through reduced oxidative stress and inhibited ferroptosis, which was related to the activation of Nrf2. Bioinformatics analysis showed an interaction between Nrf2 and FGF21. Furthermore, Nrf2 inhibition reduced FGF21 expression in the mRNA and protein levels. Fgf21 knockdown suppressed Nrf2 expression level, but recombinant FGF21 protein increased Nrf2 expression and promoted Nrf2 translocation into nucleus, suggesting a crosstalk between Nrf2 and FGF21. Intriguingly, the decreased levels of Nrf2 and FGF21 compromised the protective roles of GSDP against GLY-induced hepatocyte ferroptosis. CONCLUSION These findings suggest that GSDP attenuates GLY-caused hepatocyte ferroptosis via enhancing the interplay between Nrf2 and FGF21. Thus, GSDP may be a promising natural compound to antagonize ferroptosis-related damage.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Biological and Brewing Engineering, Taishan University, No. 525 Dongyue Street, Tai'an, Shandong 271000, China.
| | - Kun Li
- Shanghai Pulmonary Hospital, No.507 Zhengmin Road, Yangpu District, Shanghai 200433, China
| | - Song Li
- College of Basic Medicine, Shandong First Medical University, No. 6699 Qingdao Road, Ji'nan 250024, China
| | - Guangcheng Yang
- College of Biological and Brewing Engineering, Taishan University, No. 525 Dongyue Street, Tai'an, Shandong 271000, China
| | - Zhenxian Lin
- College of Biological and Brewing Engineering, Taishan University, No. 525 Dongyue Street, Tai'an, Shandong 271000, China
| | - Zengmin Miao
- College of Life Sciences, Shandong First Medical University, No. 619 Changcheng Road, Tai'an 271016, China.
| |
Collapse
|
8
|
Hu L, An E, Zhu Z, Cai Y, Ye X, Zhou H, Ge H. Grape seed-derived procyanidins decreases neuropathic pain and nerve regeneration by suppression of toll-like receptor 4-myeloid differentiation factor-88 signaling. Mol Pain 2024; 20:17448069241256466. [PMID: 38716504 PMCID: PMC11110500 DOI: 10.1177/17448069241256466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
Background: Recent studies have shown that peripheral nerve regeneration process is closely related to neuropathic pain. Toll-like receptor 4 (TLR4) signaling was involved in different types of pain and nerve regeneration. TLR4 induced the recruitment of myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB-depended transcriptional process in sensory neurons and glial cells, which produced multiple cytokines and promoted the induction and persistence of pain. Our study aimed to investigate procyanidins's effect on pain and nerve regeneration via TLR4-Myd88 signaling. Methods: Spinal nerve ligation (SNL) model was established to measure the analgesic effect of procyanidins. Anatomical measurement of peripheral nerve regeneration was measured by microscopy and growth associated protein 43 (GAP43) staining. Western blotting and/or immunofluorescent staining were utilized to detect TLR4, myeloid differentiation factor-88 adaptor protein (MyD88), ionized calcium-binding adapter molecule 1 (IBA1) and nuclear factor kappa-B-p65 (NF-κB-p65) expression, as well as the activation of astrocyte and microglia. The antagonist of TLR4 (LPS-RS-Ultra, LRU) were intrathecally administrated to assess the behavioral effects of blocking TLR4 signaling on pain and nerve regeneration. Result: Procyanidins reduced mechanical allodynia, thermal hyperalgesia and significantly suppressed the number of nerve fibers regenerated and the degree of myelination in SNL model. Compared with sham group, TLR4, MyD88, IBA1 and phosphorylation of NF-κB-p65 were upregulated in SNL rats which were reversed by procyanidins administration. Additionally, procyanidins also suppressed activation of spinal astrocytes and glial cells. Conclusion: Suppression of TLR4-MyD88 signaling contributes to the alleviation of neuropathic pain and reduction of nerve regeneration by procyanidins.
Collapse
Affiliation(s)
- Li Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Erdan An
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - ZhiPeng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Ying Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Xiaoyan Ye
- Jiaxing University Medical College, Jiaxing, China
| | - Hongmei Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Hejia Ge
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
9
|
Su Z, Wang Y, Cao J, Ma J, Wang G, Ren H, Zhang Y, Sheng K, Zhu X, Wang Y. Identification and validation of non-coding RNA-mediated high expression of IQGAP3 in poor prognosis of lung adenocarcinoma. J Gene Med 2024; 26:e3664. [PMID: 38282143 DOI: 10.1002/jgm.3664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The primary reason for tumor-related deaths worldwide is lung adenocarcinoma (LUAD). The oncogene IQ motif-containing GTPase activating protein 3 (IQGAP3) is crucial for contributing to tumor initiation and progression. However, the precise function and molecular mechanism of IQGAP3 in LUAD remain unknown. The present study aimed to investigate the expression, prognosis, mechanism and tumor immunity associated with IQGAP3 in LUAD. METHODS The relationship between IQGAP3 and the poor prognosis of LUAD was analyzed using The Cancer Genome Atlas (TCGA) database. This analysis was further validated on lung cancer tissues and cell lines. The function of IQGAP3 was investigated by silencing it in LUAD cell lines. To predict microRNA (miRNA) and long non-coding RNA associated with IQGAP3, the starBase database was utilized, and the predictions were verified by enhancing the function of miRNA. Finally, the relationship between IQGAP3 and tumor immunity was evaluated using Spearman's correlation analysis. RESULTS TCGA database revealed that higher levels of IQGAP3 were associated with advanced tumor stage, N stage and poor prognosis in LUAD patients. To confirm that, we conducted experiments on lung cancer tissues and cell lines and found that silencing IQGAP3 significantly inhibited tumor cell proliferation and migration. The expression of IQGAP3 showed a negative correlation with has-miR-101-3p and has-miR-135a-5p, whereas it showed a positive correlation with GSEC, AC005034.3 and TYMSOS. Furthermore, the introduction of miRNA-mimics into lung cancer cell resulted in a significant inhibition of cancer cell growth and migration. Following that, the level of IQGAP3 showed a positive correlation with the infiltration of immune cells in tumors. CONCLUSIONS These results reveal that IQGAP3 significantly promotes LUAD progression and could serve as a prognostic biomarker for LUAD. Furthermore, IQGAP3 is most likely regulated by the GSEC/TYMSOS-hsa-miR-101-3p axis and the AC005034.3-hsa-miR-135a-5p axis in LUAD.
Collapse
Affiliation(s)
- Ziwei Su
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Yang Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Jialing Cao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Jie Ma
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui, China
| | - Guangzhao Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Huijuan Ren
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Yihan Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Xueying Zhu
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| |
Collapse
|
10
|
Priori EC, Ratto D, De Luca F, Sandionigi A, Savino E, Giammello F, Romeo M, Brandalise F, Roda E, Rossi P. Hericium erinaceus Extract Exerts Beneficial Effects on Gut-Neuroinflammaging-Cognitive Axis in Elderly Mice. BIOLOGY 2023; 13:18. [PMID: 38248449 PMCID: PMC10813749 DOI: 10.3390/biology13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024]
Abstract
Ageing is a biological phenomenon that determines the impairment of cognitive performances, in particular, affecting memory. Inflammation and cellular senescence are known to be involved in the pathogenesis of cognitive decline. The gut microbiota-brain axis could exert a critical role in influencing brain homeostasis during ageing, modulating neuroinflammation, and possibly leading to inflammaging. Due to their anti-ageing properties, medicinal mushrooms can be utilised as a resource for developing pharmaceuticals and functional foods. Specifically, Hericium erinaceus (He), thanks to its bioactive metabolites, exerts numerous healthy beneficial effects, such as reinforcing the immune system, counteracting ageing, and improving cognitive performance. Our previous works demonstrated the capabilities of two months of He1 standardised extract oral supplementation in preventing cognitive decline in elderly frail mice. Herein, we showed that this treatment did not change the overall gut microbiome composition but significantly modified the relative abundance of genera specifically involved in cognition and inflammation. Parallelly, a significant decrease in crucial markers of inflammation and cellular senescence, i.e., CD45, GFAP, IL6, p62, and γH2AX, was demonstrated in the dentate gyrus and Cornus Ammonis hippocampal areas through immunohistochemical experiments. In summary, we suggested beneficial and anti-inflammatory properties of He1 in mouse hippocampus through the gut microbiome-brain axis modulation.
Collapse
Affiliation(s)
- Erica Cecilia Priori
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | - Daniela Ratto
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | - Fabrizio De Luca
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | - Anna Sandionigi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy;
- Quantia Consulting S.r.l., Via Petrarca 20, 22066 Mariano Comense, Italy
| | - Elena Savino
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy;
| | - Francesca Giammello
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | - Marcello Romeo
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | | | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| |
Collapse
|
11
|
Xiong L, Lin T, Yue X, Zhang S, Liu X, Chen F, Zhang S, Guan W. Maternal Selenium-Enriched Yeast Supplementation in Sows Enhances Offspring Growth and Antioxidant Status through the Nrf2/Keap1 Pathway. Antioxidants (Basel) 2023; 12:2064. [PMID: 38136184 PMCID: PMC10740904 DOI: 10.3390/antiox12122064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
This study evaluated the effects of maternal selenium-enriched yeast (SeY) supplementation during late gestation and lactation on sow performance, transfer of selenium (Se) and redox status, and gut microbiota community, as well as on the gut health of offspring. Seventy pregnant sows on day 85 of gestation were randomly allocated to the following two treatments: (1) sows who were fed a basal diet (basal diet contained 0.3 mg/kg Se as Na2SeO3, n = 35); (2) and sows who were fed a SeY-supplemented diet (basal diet with 0.2 mg/kg Se as SeY, n = 35). The offspring piglets were only cross-fostered within the group on day 3 of lactation (L3) according to the pig farm epidemic prevention policy. The plasma, milk, and feces samples from 10 sows, as well as plasma and intestinal samples per treatment, were collected on L1 and L21, respectively. Our results showed that maternal SeY supplementation increased the first week average weight and ADG of piglets (p < 0.05). Compared with the CON group, the SeY supplementation increased the Se content in the plasma and milk of sows and the plasma of piglets on L1 and L21 (p < 0.05). In addition, in sows, the levels of fat in the milk on L21, the level of IgA, T-AOC, and GSH-Px in the plasma on L21, and the level of T-AOC and GSH-Px in the colostrum were increased, while the MDA content was decreased in the plasma on L1 and in the colostrum and milk on L14 (p < 0.05). In the piglet plasma, the levels of IgA on L1 and L21, GSH-Px on L1, and GSH on L21 were increased, while the MDA content was decreased on L1 (p < 0.05). Maternal SeY supplementation up-regulated the small intestinal protein abundances of MUC1, E-cadherin, ZO-1, occludin, and claudin and activated the Nrf2/Keap1 signaling pathway in weaned offspring piglets. The 16S rRNA sequencing results showed that fecal microbiota had distinct separations during lactation, and the relative abundances of unclassified_f_Lachnospiraceae, Prevotaceae_UCG-001, and Lachnospiraceae_NK4A136_group were increased on L1. Collectively, the current findings suggest that maternal SeY supplementation during late gestation and lactation could improve the piglet's growth performance, Se status, antioxidant capacity and immunoglobulins transfer at the first week of lactation, as well as alter the fecal microbiota composition by increasing antioxidative-related and SCFA-producing microbiota in sows. These changes contributed to enhancing the small intestinal barrier function and activating the Nrf2/Keap1 pathway in offspring.
Collapse
Affiliation(s)
- Liang Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Tongbin Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Xianhuai Yue
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Shuchang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Zhang W, Ding L, Zhang M, Zheng S, Ma R, Gong J, Mao H, Xu H, Xu P, Zhang Y. Dietary intake of α-ketoglutarate ameliorates α-synuclein pathology in mouse models of Parkinson's disease. Cell Mol Life Sci 2023; 80:155. [PMID: 37204481 PMCID: PMC11073026 DOI: 10.1007/s00018-023-04807-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Parkinson's disease (PD) is a progressive movement disorder characterized by dopaminergic (DA) neuron degeneration and the existence of Lewy bodies formed by misfolded α-synuclein. Emerging evidence supports the benefits of dietary interventions in PD due to their safety and practicality. Previously, dietary intake of α-ketoglutarate (AKG) was proved to extend the lifespan of various species and protect mice from frailty. However, the mechanism of dietary AKG's effects in PD remains undetermined. In the present study, we report that an AKG-based diet significantly ameliorated α-synuclein pathology, and rescued DA neuron degeneration and impaired DA synapses in adeno-associated virus (AAV)-loaded human α-synuclein mice and transgenic A53T α-synuclein (A53T α-Syn) mice. Moreover, AKG diet increased nigral docosahexaenoic acid (DHA) levels and DHA supplementation reproduced the anti-α-synuclein effects in the PD mouse model. Our study reveals that AKG and DHA induced microglia to phagocytose and degrade α-synuclein via promoting C1q and suppressed pro-inflammatory reactions. Furthermore, results indicate that modulating gut polyunsaturated fatty acid metabolism and microbiota Lachnospiraceae_NK4A136_group in the gut-brain axis may underlie AKG's benefits in treating α-synucleinopathy in mice. Together, our findings propose that dietary intake of AKG is a feasible and promising therapeutic approach for PD.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengran Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
| | - Shaohui Zheng
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
| | - Runfang Ma
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
| | - Junwei Gong
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hengxu Mao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Huaxi Xu
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- School of Life Sciences, Westlake University, Hangzhou, 310024, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| |
Collapse
|
13
|
Wang T, Xu H, Dong R, Wu S, Guo Y, Wang D. Effectiveness of targeting the NLRP3 inflammasome by using natural polyphenols: A systematic review of implications on health effects. Food Res Int 2023; 165:112567. [PMID: 36869555 DOI: 10.1016/j.foodres.2023.112567] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Globally, inflammation and metabolic disorders pose serious public health problems and are major health concerns. It has been shown that natural polyphenols are effective in the treatment of metabolic diseases, including anti-inflammation, anti-diabetes, anti-obesity, neuron-protection, and cardio-protection. NLRP3 inflammasome, which are multiprotein complexes located within the cytosol, play an important role in the innate immune system. However, aberrant activation of the NLRP3 inflammasome were discovered as essential molecular mechanisms in triggering inflammatory processes as well as implicating it in several major metabolic diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis or cardiovascular disease. Recent studies indicate that natural polyphenols can inhibit NLRP3 inflammasome activation. In this review, the progress of natural polyphenols preventing inflammation and metabolic disorders via targeting NLRP3 inflammasome is systemically summarized. From the viewpoint of interfering NLRP3 inflammasome activation, the health effects of natural polyphenols are explained. Recent advances in other beneficial effects, clinical trials, and nano-delivery systems for targeting NLRP3 inflammasome are also reviewed. NLRP3 inflammasome is targeted by natural polyphenols to exert multiple health effects, which broadens the understanding of polyphenol mechanisms and provides valuable guidance to new researchers in this field.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, 211169 Nanjing, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hanzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| |
Collapse
|
14
|
Alomair MK, Alobaid AA, Almajed MAA, Alabduladheem LS, Alkhalifah EA, Mohamed ME, Younis NS. Grape Seed Extract and Urolithiasis: Protection Against Oxidative Stress and Inflammation. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221145069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Background Grape seed extract (GSE) has demonstrated various pharmacological actions. Urolithiasis is the occurrence of calculus in the renal system. The present study evaluated the anti-urolithic effect of GSE on ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Materials and Methods Rats were assigned into six groups; Normal control and Normal + GSE, in which rats received standard drinking water and GSE orally daily, respectively; Urolithiatic animals received EG with AC in drinking water for 28 days; Urolithiatic animals + GSE, in which rats were administered EG with AC in drinking water and GSE 100 and 200 mg/kg orally; and Urolithiatic + cystone, where rats received EG with AC in drinking water and 750 g/kg of cystone as a standard drug orally. Results Urolithiatic animals showed a significant decrease in excreted magnesium and citrate and antioxidant enzymes, whereas they exhibited amplified oxalate crystal numbers, urinary excreted calcium, phosphate, oxalate ions, uric acid, intensified renal function parameters, lipid peroxidation, and inflammatory mediators. Management with GSE and cystone significantly augmented urolithiasis inhibitors (excreted magnesium and citrate) and amplified the antioxidant enzymes’ activities. GSE reduced oxalate crystal numbers and urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid excretion, lessened renal function parameters, and declined lipid peroxidation and the inflammatory mediators. Conclusion GSE could protect against EG-induced renal stones as evidenced by mitigated kidney dysfunction, histological alterations, and oxalate crystal formation. This action may be related to the antioxidant as well as anti-inflammatory activities of the extracts.
Collapse
Affiliation(s)
- Manar Khalid Alomair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Amjad Abdullah Alobaid
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Marwah Abdulaziz Ali Almajed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Lama Salman Alabduladheem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Maged Elsayed Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nancy Safwat Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
15
|
Wu L, Huang X, Ouyang Q, Liu W, Liu S, Huang Y, Peng Y, Ning D, Tan C. Serum metabolomics study for acute attack of chronic pancreatitis. Clin Chim Acta 2023; 541:117251. [PMID: 36775008 DOI: 10.1016/j.cca.2023.117251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND & AIMS Chronic pancreatitis (CP) is an inflammatory disease characterized by irreversible changes. However, acute CP attacks can lead to various complications and affect patient prognosis. Therefore, this study aimed to identify reliable candidate metabolic biomarkers for diagnosing acute CP attacks and complement candidate diagnostic markers for CP. METHODS A total of 139 serum specimens were prospectively included in three consecutive exploratory, identification, and validation studies. All samples were analyzed for candidate diagnostic biomarkers and metabolic pathways using a liquid chromatography-mass spectrometer. RESULTS Serum metabolic profiles differed between patients with CP and non-pancreatic disease controls, and 239 potential metabolic biomarkers for diagnosing CP were identified. Based on identification and validation studies, Diacylglycerol(16:0/18:4), 16-F1-PhytoP, N-(hexacosanoyl)-tetradecasphing-4-enine, carnosic acid, and Auxin b were identified as biomarkers for distinguishing acute attacks from non-acute attacks in patients with CP. The area under the curve of the Diacylglycerol(16:0/18:4) was 0.969 (95% confidence interval, 0.869-1) in the validation study. CONCLUSIONS To the best of our knowledge, this is the first prospective cohort study to identify and validate a metabolomic signature in serum for diagnosing acute attacks of CP. In addition, our study identified 239 potential biomarkers for CP diagnosis.
Collapse
Affiliation(s)
- Ling Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Xiangping Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Qianhui Ouyang
- Department of Clinical Laboratory, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Wen Liu
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Sixiang Liu
- Department of Emergency, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Ying Huang
- Department of Emergency, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Ya Peng
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Ding Ning
- Department of Emergency Medical, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Chaochao Tan
- Department of Clinical Laboratory, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China.
| |
Collapse
|
16
|
Wang X, Wang Z, Cao J, Dong Y, Chen Y. Gut microbiota-derived metabolites mediate the neuroprotective effect of melatonin in cognitive impairment induced by sleep deprivation. MICROBIOME 2023; 11:17. [PMID: 36721179 PMCID: PMC9887785 DOI: 10.1186/s40168-022-01452-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/18/2022] [Indexed: 06/12/2023]
Abstract
Sleep loss is a serious global health concern. Consequences include memory deficits and gastrointestinal dysfunction. Our previous research showed that melatonin can effectively improve cognitive impairment and intestinal microbiota disturbances caused by sleep deprivation (SD). The present study further explored the mechanism by which exogenous melatonin prevents SD-induced cognitive impairments. Here, we established fecal microbiota transplantation, Aeromonas colonization and LPS or butyrate supplementation tests to evaluate the role of the intestinal microbiota and its metabolites in melatonin in alleviating SD-induced memory impairment. RESULTS: Transplantation of the SD-gut microbiota into normal mice induced microglia overactivation and neuronal apoptosis in the hippocampus, cognitive decline, and colonic microbiota disorder, manifesting as increased levels of Aeromonas and LPS and decreased levels of Lachnospiraceae_NK4A136 and butyrate. All these events were reversed with the transplantation of SD + melatonin-gut microbiota. Colonization with Aeromonas and the addition of LPS produced an inflammatory response in the hippocampus and spatial memory impairment in mice. These changes were reversed by supplementation with melatonin, accompanied by decreased levels of Aeromonas and LPS. Butyrate administration to sleep-deprived mice restored inflammatory responses and memory impairment. In vitro, LPS supplementation caused an inflammatory response in BV2 cells, which was improved by butyrate supplementation. This ameliorative effect of butyrate was blocked by pretreatment with MCT1 inhibitor and HDAC3 agonist but was mimicked by TLR4 and p-P65 antagonists. CONCLUSIONS: Gut microbes and their metabolites mediate the ameliorative effects of melatonin on SD-induced cognitive impairment. A feasible mechanism is that melatonin downregulates the levels of Aeromonas and constituent LPS and upregulates the levels of Lachnospiraceae_NK4A136 and butyrate in the colon. These changes lessen the inflammatory response and neuronal apoptosis in the hippocampus through crosstalk between the TLR4/NF-κB and MCT1/ HDAC3 signaling pathways. Video Abstract.
Collapse
Affiliation(s)
- Xintong Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193 China
- Department of Nutrition and Health, China Agricultural University, Haidian, Beijing, 100193 China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193 China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193 China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193 China
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193 China
- Department of Nutrition and Health, China Agricultural University, Haidian, Beijing, 100193 China
| |
Collapse
|
17
|
Talebi M, Esmaeeli H, İlgün S, Talebi M, Farkhondeh T, Mishra G, Samarghandian S. The Protective Role of Grape Seed in Obesity and Lipid Profile: An Updated Narrative Overview of Preclinical and Clinical Studies. Endocr Metab Immune Disord Drug Targets 2023; 23:46-62. [PMID: 35786197 DOI: 10.2174/1871530322666220630091859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
Obesity and dyslipidemia are common disorders universally. According to the acquired outcomes of recent studies, dietary supplementations which have great content of phenolic compounds exert protective effects against obesity and dyslipidemia. Grape [Vitis vinifera] seeds are considered attractive sources of phenolic compounds with anti-oxidative stress and anti-inflammatory effects. There are also various experimental studies describing hepatoprotective, neuroprotective, anti-aging, cardioprotective, and anti-carcinogenic effects of polyphenols isolated from grape seed, highlighting the therapeutic and biological aspects of proanthocyanidins. The present review article first discusses pharmacological, botanical, toxicological, and phytochemical characteristics of Vitis vinifera seeds and afterward designates the protective properties which are attributed to the intake of grape seeds in obesity and hyperlipidemia. Overall valuable and updated findings of this study display that polyphenol of grape seeds has meaningful impacts on the regulation of lipid profile levels and management of obesity.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 1991953381, Iran
| | - Hadi Esmaeeli
- Research and Development Unit, NIAK Pharmaceutical Company, Gorgan, Iran.,Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Mohsen Talebi
- Viatris Pharmaceuticals Inc., 3300 Research Plaza, San Antonio, Texas, United States.,Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
18
|
Chen B, Yi J, Xu Y, Wen H, Tian F, Liu Y, Xiao L, Li L, Liu B. Apolipoprotein E knockout may affect cognitive function in D-galactose-induced aging mice through the gut microbiota–brain axis. Front Neurosci 2022; 16:939915. [PMID: 36188475 PMCID: PMC9520596 DOI: 10.3389/fnins.2022.939915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
The gut microbiota plays an important role in central nervous system (CNS) disorders. Apolipoprotein E (ApoE) can affect the composition of the gut microbiota and is closely related to the CNS. However, the mechanism by which ApoE affects cognitive dysfunction through the gut microbiota–brain axis has thus far not been investigated. In this study, we used wild-type mice and ApoE knockout (ApoE–/–) mice to replicate the aging model and examined the effects of ApoE deletion on cognitive function, hippocampal ultrastructure, synaptophysin (SYP) and postsynaptic density 95 (PSD-95) in aging mice. We also explored whether ApoE deletion affects the gut microbiota and the metabolite profile of the hippocampus in aging mice and finally examined the effect of ApoE deletion on lipids and oxidative stress in aging mice. The results showed that the deletion of ApoE aggravated cognitive dysfunction, hippocampal synaptic ultrastructural damage and dysregulation of SYP and PSD-95 expression in aging mice. Furthermore, ApoE deletion reduced gut microbial makeup in aging mice. Further studies showed that ApoE deletion altered the hippocampal metabolic profile and aggravated dyslipidemia and oxidative stress in aging mice. In brief, our findings suggest that loss of ApoE alters the composition of the gut microbiota, which in turn may affect cognitive function in aging mice through the gut microbiota–brain axis.
Collapse
Affiliation(s)
- Bowei Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Jian Yi
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Yaqian Xu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Huiqiao Wen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Fengming Tian
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Yingfei Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Lan Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lisong Li
- College of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Baiyan Liu
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Baiyan Liu,
| |
Collapse
|
19
|
Bejaoui W, Mahmoudi M, Charradi K, Abbes-Belhadj M, Boukhalfa H, Ben-Attia M, Limam F, Aouani E. Preventive and healing effect of high dosing grape seed flour on CKD patients of various stages and etiologies. Biomarkers 2022; 27:795-801. [DOI: 10.1080/1354750x.2022.2125580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Wiem Bejaoui
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria, BP 901, Hammam-lif 2050, Tunisia
- University of Carthage, Faculty of Science of Bizerte, Tunisia
| | - Mohamed Mahmoudi
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria, BP 901, Hammam-lif 2050, Tunisia
| | - Kamel Charradi
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria, BP 901, Hammam-lif 2050, Tunisia
| | | | | | - Mossadok Ben-Attia
- Laboratory of Biosurveillance of the Environment, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Ferid Limam
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria, BP 901, Hammam-lif 2050, Tunisia
| | - Ezzedine Aouani
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria, BP 901, Hammam-lif 2050, Tunisia
- University of Carthage, Faculty of Science of Bizerte, Tunisia
| |
Collapse
|