1
|
Nonami R, Kishino Y, Yamasaki T, Kanemoto K, Iwai K, Nishiwaki N, Shibatomi K, Shirai T. Cationic Iridium-Catalyzed Decarboxylation of Aromatic Carboxylic Acids. Chem Asian J 2023; 18:e202300533. [PMID: 37464542 DOI: 10.1002/asia.202300533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
Practical synthetic applications of catalytic decarboxylation in producing useful molecules are limited. We report herein the cationic Ir-catalyzed decarboxylations of various electron-rich and -poor aromatic carboxylic acids to produce hydrocarbons in good yield (up to >99%). Additionally, this reaction is applicable in decarboxylative hydroarylation of bicyclic alkenes and decarboxylative fluorination, indicating the potential utility of this catalytic decarboxylation in synthetic chemistry.
Collapse
Affiliation(s)
- Reina Nonami
- Department of Social Design Engineering, National Institute of Technology, Kochi College, 200-1 Monobe Otsu, Nankoku, Kochi, 783-8508, Japan
| | - Yu Kishino
- Department of Social Design Engineering, National Institute of Technology, Kochi College, 200-1 Monobe Otsu, Nankoku, Kochi, 783-8508, Japan
| | - Tomokazu Yamasaki
- Department of Social Design Engineering, National Institute of Technology, Kochi College, 200-1 Monobe Otsu, Nankoku, Kochi, 783-8508, Japan
| | - Kazuya Kanemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Kento Iwai
- School of Engineering Science, Kochi University of Technology, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Nagatoshi Nishiwaki
- School of Engineering Science, Kochi University of Technology, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Kazutaka Shibatomi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Tomohiko Shirai
- Department of Social Design Engineering, National Institute of Technology, Kochi College, 200-1 Monobe Otsu, Nankoku, Kochi, 783-8508, Japan
| |
Collapse
|
2
|
Jiang T, Huang J, Peng J, Wang Y, Du L. Characterization of Silver Nanoparticles Synthesized by the Aqueous Extract of Zanthoxylum nitidum and Its Herbicidal Activity against Bidens pilosa L. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101637. [PMID: 37242051 DOI: 10.3390/nano13101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Phytosynthesis of silver nanoparticles (Ag NPs) has been progressively acquiring attractiveness. In this study, the root of Zanthoxylum nitidum was used to synthesize Ag NPs, and its pre-emergence herbicidal activity was tested. The synthesized Ag NPs by the aqueous extract from Z. nitidum were characterized by visual inspection, ultraviolet-visible spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). The plant-mediated synthesis was completed within 180 min and the Ag NPs exhibited a characteristic peak at around 445 nm. The results of the DLS measurement showed that the average hydrodynamic diameter was 96 nm with a polydispersity index (PDI) of 0.232. XRD results indicated the crystalline nature of the phytogenic Ag NPs. A TEM analysis revealed that the nanoparticles were spherical with an average particle size of 17 nm. An EDX spectrum confirmed the presence of an elemental silver signal. Furthermore, the Ag NPs exhibited a herbicidal potential against the seed germination and seedling growth of Bidens Pilosa L. The present work indicates that Ag NPs synthesized by plant extract could have potential for the development of a new nanoherbicide for weed prevention and control.
Collapse
Affiliation(s)
- Tianying Jiang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Jinyan Huang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Jieshi Peng
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Yanhui Wang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Liangwei Du
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Kocsis M, Szabados M, Ötvös SB, Samu GF, Fogarassy Z, Pécz B, Kukovecz Á, Kónya Z, Sipos P, Pálinkó I, Varga G. Selective production of imines and benzimidazoles by cooperative bismuth(III)/transition metal ion catalysis. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|